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Random Number 

• Random numbers are characterized by the fact that their 
value can not be predicted.  

• Or,  in other words, if one constructs a sequence of 
random  numbers, the  probability  distribution  of 
the following random numbers have to be 
completely independent of all the other 
generated numbers. 

• Random  numbers  are  samples  drawn  from  a  uniformly 
distributed random variable between some satisfied 
intervals, they have equal probability of 
occurrence. 
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Random Number 

• Random numbers are a necessary basic ingredient 
(element) in the simulation of almost all discrete systems.  

• Most  computer  languages  have  a  subroutine,  object,  or 
function that will generate a random number.  

• Similarly simulation languages generate random numbers 
that are used to generate event limes and other random 
variables.  
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Random Number Tables  

• A table of numbers generated in an 
unpredictable, haphazard (hit-or-miss) that 
are uniformly distributed within certain 
interval are called random number table.  

• The random number in random number table exactly obey 
two random number properties: uniformity and 
independence  so  random  number  generated  form  table 
also called true random numbers  
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Random Number Tables  

• Table  of  random  numbers  are  used  to  create  a  Radom 
sample.  

• A  random  number  table  is  also  called  random  sample 
table.  

• There are many physical devices or process that can be 
used to generate a  sequence  of uniformly  distributed 
random numbers i.e. true random numbers.  

• For example: An electrical pulse generator can be made 
to drive a counter cycling from 0 to 9.  

• Using an electronic noise generator or radioactive source 
the pulse can be generated as random numbers.  
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Properties of Random Numbers 

• A  sequence  of  random  numbers, 𝑅1, 𝑅2, 𝑅3 …  .. 
must have two important properties: 
• Uniformity, i.e. they are equally probable every where 

• Independence, i.e. the current value of a random 
variable has no relation with the previous values 
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Properties of Random Numbers 
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• Each random number Rt is an independent 
sample  drawn from a continuous uniform 
distribution  between 0 and 1 

1 , 0  x  1 
pdf: f(x) =  

0 , otherwise 
(Probability Distribution Function) 
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Properties of Random Numbers 
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• Expectation:  
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Properties of Random Numbers 

• Variance  
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So, 
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Properties of Random Numbers 
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Consequences of Uniformity and Independence 
Properties: 

• If the interval (0,1) is divided into n sub-intervals of equal 
length, the  expected number of observations in each 
interval is N/n, where N is the total number of 
observations.  Note  that  N  has  to  be  sufficiently  large  to 
show this trend. 

• The probability of observing a value in a particular interval 
is independent of the previous values drawn. 
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Types of random numbers 
• There are three types of random numbers, quasi-, pseudo- and 

true- random numbers.  

• These different types of random numbers have different 
applications.  

1.True Random Number:   

 The most often used example for “truly” random numbers 
is the decay of a radioactive material.  

 If  a  Geiger  counter  is  put  in  front  of  such  a  radioactive 
source, the intervals between the decay events are truly random.  

 True random numbers are gained from physical 
processes like radioactive decay or also rolling a dice. But rolling 
a dice is difficult, perhaps someone could control the dice so well 
to determine the outcome. 
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Types of random numbers 

2.Pseudo Random Number:  

 These numbers are generated by a computer or that 
is  to  say,  by  an  algorithm  and  because  of  this  not  truly 
random.  

 Every  new  number  is  generated  from  the  previous 
ones by an algorithm.  

 This means that the new value is fully determined by 
the  previous  ones.  But,  depending  on  the  algorithm,  they 
often have properties making them very suitable for 
simulations. 
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Types of random numbers 

3. Quasi Random Number : Quasi (Virtual) random 
numbers are not designed to appear random, rather to be 
uniformly distributed. 

 One aim of such numbers is to reduce and control 
errors in Monte Carlo simulations. 
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Pseudo Random Numbers  

• Pseudo means false, so false random numbers are being 
generated.  

• The goal  of  any  generation scheme  is  to  produce  a 
sequence of numbers between zero and 1 which 
simulates, or imitates, the ideal properties of uniform 
distribution and independence as closely as possible.  
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Pseudo Random Numbers  

• It  is  not  possible  to  generate  a  perfect  random  number 
that is the random numbers are generated by some 
known arithmetic operations or formulas which is pseudo- 
random number or false random number. 

• Since the arithmetic operation is known and the sequence 
of random numbers can be repeated, the numbers cannot 
be called truly random number.  

• However the pseudo-random numbers generated by 
many computer routines very closely fulfill the 
requirement of desired randomness.  
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Pseudo Random Numbers  
When generating pseudo-random numbers, certain problems or 
errors can occur. Some examples include the following: 
• The generated numbers may not be uniformly distributed. 

• The  generated  numbers  may  be  discrete-valued  instead  continuous 
valued. { Numbers are discrete valued and not continuous on [0,1] } 

• The mean of the generated numbers may be too high or too low. 

• The variance of the generated numbers may be too high or low. 

• There may be dependence. The following are the examples: 
a) Autocorrelation between numbers. 

b) Numbers successively higher or lower than adjacent numbers. 

c) Several  numbers  above  the  mean  followed  by  several  numbers  below  the 
mean. 
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Properties  of  Good  random  Number 
Generators  
 Usually, random numbers are generated by a digital 
computer as part of the simulation. Numerous methods can 
be used to generate the values. In selecting among these 
methods,  or  routines,  there  are  a  number  of  important 
considerations.  
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Properties  of  Good  random  Number 
Generators  

1. The routine should be fast. The total cost can be managed 
by selecting a computationally efficient method of random-number 
generation.  

2. The routine should be portable to different 
computers, and ideally to different programming 
languages  .This  is  desirable  so  that  the  simulation  program 
produces the same results wherever it is executed.  

3. The routine should have a sufficiently long cycle. The 
cycle  length,  or  period,  represents  the  length  of  the  random-
number  sequence  before  previous  numbers  begin  to  repeat 
themselves in an earlier order. Thus, if 10,000 events are to be 
generated,  the  period  should  be  many  times  that  long;  a 
special  case  cycling  is  degenerating.  A  routine  degenerates 
when the same random numbers appear repeatedly. Such an 
occurrence is certainly unacceptable. This can happen rapidly 
with some methods.  
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Properties  of  Good  random  Number 
Generators  

4 . The random numbers should be replicable. Given 
the starting point (or conditions), it should be possible to 
generate the same set of random numbers, completely 
independent  of  the  system  that  is  being  simulated.  This  is 
helpful  for  debugging  purpose  and  is  a  means  of  facilitating 
comparisons between systems.  

5. Most  important,  and  as  indicated  previously,  the 
generated random numbers should closely 
approximate the ideal statistical properties of 
uniformity and independences  
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Method / Techniques  to Generate 
Random  Numbers  
Congruence or Residue Method (Uniform - Linear 
Congruential Method) 

The linear congruential method, initially proposed by Lehrer 
[1951], produces a sequence of integers, X1, X2,... 
between zero and m — 1 according to the following 
recursive relationship:  

 

 Xi+1
 = (aXi + c) mod m…………………….(i) 

 

 The initial value X 0 is called the seed, a is called the 
constant  multiplier,  c  is  the  increment,  and  m  is  the 
modulus.  
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Congruence or Residue Method (Uniform - Linear 
Congruential Method) 

• Case  1:  If  c  ≠  0  in  Equation  (i),  the  form  is  called  the 
mixed congruential method.  

• Case 2: When c = 0, the form is known as the 
multiplicative congruential method.  

 

 The  selection  of  the  values  for  a,  c,  m  and  Xo 
drastically  affects  the  statistical  properties  and  the  cycle 
length. An example will illustrate how this technique 
operates.  
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Congruence or Residue Method (Uniform - Linear 
Congruential Method) 

Mixed Congruential Method: c ≠ 0 
Here , 
  Xi+1

 = (aXi + c) mod m 
Let a = 9, c = 3 , m = 31 & X0 = 2 
Then ,   X1   = (aX0 + c) mod m 
         = ( 9 X 2 + 3) mod 31 
   = 21 mod 31 
   = 21 
  X2 = (aX1 + c) mod m 
   = ( 9 X 21 + 3) mod 31 
   = 192 mod 31 
   = 6 
And X3=26 , X4=20, X5=28  
Hence, random number are 2,21,6,26,20,28,7,4,8  
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Congruence or Residue Method (Uniform - Linear 
Congruential Method) 

Multiplicative Congruential Method: c = 0 
Here , 
  Xi+1

 = (aXi ) mod m 
Let a = 9 , m = 31 & X0 = 2 
Then ,   X1   = (aX0 ) mod m 
         = ( 9 X 2) mod 31 
   = 18  mod 31 
   = 18 
  X2 = (aX1) mod m 
   = ( 9 X 18) mod 31 
   = 162 mod 31 
   = 7 
And X3=1 , X4=9, X5=19  
Hence, random number are 2,18,7,1,9,19,16,20…..  
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Congruence or Residue Method (Uniform - Linear 
Congruential Method) 

Additive Congrutial Method : a =1 

Here , 
  Xi+1

 = (Xi + c) mod m 
Let c = 17 , m = 29 & X0 = 7 
Then ,   X1   = (X0 + c) mod m 
         = ( 7 + 17) mod 29 
   = 24 mod 29 
   = 24 
  X2 = (X1 + c) mod m 
   = ( 24 + 17) mod 29 
   = 41 mod 29 
   = 12 
And X3=0 , X4=17, X5=5  
Hence, random number are 7,24,12,0,17,5,22,10,27….. 

Simulation and Modeling / [Chapter 5] Nipun Thapa 24 https://collegenote.pythonanywhere.com



Congruence or Residue Method (Uniform - Linear 
Congruential Method) 

Arithmetic Congruential Method : 
In this method random number are generated by the eq: 

  Xi+1
 = (Xi-1 + Xi) mod m 

Let , X1=9, X2=13, m=17 

X3=(X1 + X2) mod m = (9 + 13) mod 17 = 5 

X4=(X2 + X3) mod m = (13 + 5) mod 17 = 1 

……………….. 

So 

The random numbers are 9,13,5,1,6,7,13,3……….. 
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EXAMPLE 3.1  

Q.N.  Use  the  linear  congruential  method  to  generate  a 
sequence of random numbers with X 0 = 27, a= 17, c = 43, 
and m = 100. Here, the integer values generated will all be 
between zero and 99 because of the value of the modulus. 
These random integers should appear to be uniformly 
distributed the integers zero to 99. Random numbers 
between zero and 1 can be generated by  

 Ri =Xi/m, i= 1,2,……(3.1) 
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solution 
The sequence of Xi and subsequent Ri values is computed as follows: 
X0 = 27  
X1 = (17x27 + 43) mod 100 = 502 mod 100 = 2 
R1=2⁄100=0.02  
X2 = (17 x 2 + 43) mod 100 = 77 mod 100 = 77  
R2=77 ⁄100=0.77  
X3 = (17 x 77+ 43) mod 100 = 1352 mod 100 = 52  
R3=52 ⁄100=0.52 
 
First,  notice  that  the  numbers  generated  from  Equation  (3.2)  can  only 
assume values from the set i= {0,1 /m, 2/m,..., (m — l)/m), since each Xi is 
an integer in the set {0,1,2,..., m -1}. Thus, each Ri is discrete on i, instead 
of continuous on the interval [0, 1], This approximation appears to be of 
little  consequence,  provided  that  the  modulus  m  is  a  very  large  integer. 
(Values such as m = 231 -1 and m = 248 are in common use in generators 
appearing in many simulation languages). By maximum density is meant 
that the values assumed by Ri = 1,2,..., leave no large gaps on [0,1].  
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EXAMPLE 3.2 

Q.N  >Let  m  =  100,  a  =  19,  c  =  0,  and  X0  =  63,  and 
generate a sequence random integers. Find first 7 random 
number generate using any suitable method?? 

Solution 

X0 = 63  

X1 = (19)(63) mod 100 = 1197 mod 100 = 97  

X2 = (19) (97) mod 100 = 1843 mod 100 = 43  

X3 = (19) (43) mod 100 = 817 mod 100 = 17  
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EXAMPLE 3.3  

Q.N  >  Let  a  =  75,  m  =  231-1  and  c=  0.  These  choices 
satisfy  the  conditions  that  insure  a  period  of  P  =  m-1. 
Further, specify a seed, X0 = 123,457.  

Solution: 

The first few numbers generated are as follows:  
X1= 75(123,457) mod (231 - 1) = 2,074,941,799 mod (231 - 1)  

X1 = 165 

X2 = 75(2,074,941,799) mod (231 - 1) = 559,872,160 =185 

  

X3 = 75(559,872,160) mod (231 - 1) = 1,645,535,613 = 
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EXAMPLE 3.4 

Q.N > Using the multiplicative congruential method, find the 
period of the generator for a = 13, m = 64, and X 0 = 1, 2, 3, 
and 4. Prove that the solution is given , when the seed is 1 
and 3, the sequence has period 16, a period of length eight 
is achieved when the seed is 2 and a period of length four 
occurs when the seed is 4. 
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solution 

Period Determination Using Various seeds 
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Q.N.1>Let  m  =  47,  a  =  19,  and  X0  =  46,  and  generate  a 
sequence  c  random  integers.  Find  first  4  random  number 
generate using any suitable method?? 

Q.n.2>Let  m  =  100,  a  =  19,  c  =  6,  and  X0  =  63,  and 
generate a sequence c random integers. Find first 5 
random number generate using any suitable method?? 

Q.N.3>Find random number, with first two random number 
is 10 and 15 respectively with modulus 50 . 
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Testing for Randomness  

 The  desirable  properties  of  random  numbers  —  uniformity 
and independence to ensure that these desirable properties are 
achieved, a number of tests can be performed (fortunately, the 
appropriate  tests  have  already  been  conducted  for  most  commercial 
simulation software}.  

 The  tests  can  be  placed  in  two  categories  according  to  the 
properties of interest.  

 

a) Testing for uniformity  

b) Testing for independence.  
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Testing for Randomness  
 The desired properties of random numbers are uniformity and 
independence. So, the test of random numbers means uniformity and 
independence test. There are different types of test used for these purpose. They 
are as follows: 
1. Frequency test:  
 Uses the Kolmogorov-Smirnov (KS) or Chi-square test to compare the 
distribution of the set of numbers generated to a uniform distribution 
2. Runs test:  
 Tests  the  runs  up  and  down  or  the  runs  above  or  below  the  mean  by 
comparing the actual value to expected value. 
 The statistics for comparison in Chi-square. 
3. Auto correlation test:  
 Tests the correlation between numbers and compares the sample 
correlation to the expected correlation of zero. 
4. Gap test:  
 Counts the number of digits that appear between repetition of a particular 
digit and then uses KS test to compare with the expected size of gaps. 
5. Poker test:  
 Treats numbers group together as a poker hand. Then the hands obtained 
are compared to what is expected using the Chi-square test. 

 

Simulation and Modeling / [Chapter 5] Nipun Thapa 34 https://collegenote.pythonanywhere.com



Testing for uniformity 

 The  testing  for  uniformity  can  be  achieved  through 
different frequency test.  

 These  tests  use  the  Kolmogorov-Smirnov  or  the 
chi-  square  test  to  compare  the  distribution  of  the  set  of 
numbers generated to a uniform distribution. Hence in this 
category we will discuss two types of test  
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Testing for uniformity 

1.The Kolmogorov-Smirnov (KS) test. 

 This  test  compares  the  continuous  cdf,  F(x),  of  the  uniform 
distribution to the empirical cdf, SN(x), of the sample of N observations.  

By definition,  

 F(x) = x,   0 <= x <= 1  

 If  the  sample  from  the  random-number  generator  is  R1,R2 ,… 
RN, then the empirical cdf, SN(X), is defined by 

 

 

 
 

 As N becomes larger, SN(X) should become a better approximation to 
F(X), provided that the null hypothesis is true. 
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1.The Kolmogorov-Smirnov (KS) test. 

 The  Kolmogorov-Smirnov  test  is  based  on  the 
largest  absolute  deviation  or  difference  between  F(x)  and 
SN(X) over the range of the random variable.  

i.e. it is based on the statistic  

 

  D = max | F(x) - SN(x) |  
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Algorithm for K-S test  
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Table A.8 Kolmogorov-Smirnov Critical Values 
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EXAMPLE 3.5 

Q.N > Suppose that the five numbers 0.44 , 0.81, 0.14, 0.05, 0.93 were 
generated,  and  it  is  desired  to  perform  a  test for  uniformity  using  the 
Kolmogorov-Smirnov test with a level of significance a of 0.05. 

Solution 

First, the numbers must be ranked from smallest to largest 

 i.e. 0.05 , 0.14 , 0.44 , 0.81 , 0.93 

Then , 

 The computations for D+, namely { i /N -R(i) } and for              

D-, namely { R(i ) - ( i - l ) / N } , 
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R(i) 0.05 0.14 0.44 0.81 0.93 

i/N 0.2 0.4 0.6 0.8 1.00 

i/N – R(i) 0.15 0.26 0.16 _ 0.07 

R(i) – (i-1)/N 0.05 _ 0.04 0.21 0.13 
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The statistics are computed as D+ = 0.26 and D- = 0.21. 

Therefore, 
 D = max{0.26, 0.21} = 0.26. 
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The critical value of D, obtained from Table A.8 for a = 0.05 
and N= 5, is 0.565.  

 

 Since  the  computed  value,  0.26,  is  less  than  the 
tabulated critical value, 0.565, the hypothesis of no 
difference between the distribution of the generated 
numbers and the uniform distribution is not rejected. 
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Example 3.6 

• Suppose  that  the  five  numbers  0.24  ,  0.80,  0.11,  0.05, 
0.93 were generated, and it is desired to perform a test for 
uniformity using the Kolmogorov-Smirnov test with a level 
of significance a of 0.01.  
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Example 3.7 

• Suppose that the four numbers 0.80, 0.14, 0.05, 0.5 were 
generated, and it is desired to perform a test for uniformity 
using the Kolmogorov-Smirnov test with a level of 
significance a of 0.10. 
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Example 3.8 

• Suppose that the seven numbers 0.44 , 0.81, 0.14, 0.05, 
0.93,  0.01,  0.02  were  generated,  and  it  is  desired  to 
perform a test for uniformity using the Kolmogorov-
Smirnov test with a level of significance a of 0.05. 
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The Chi-square Test 

• The chi-square test uses the sample statistic 
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Where, 

Oi is the observed number in the i-th class, 

Ei is the expected number in the i-th class, and  

n is the number of classes. 
 For the uniform distribution, Ei the expected number in each class 
is given by:  

  Ei = N/n 
 for equally spaced classes, where N is the total number of 
observations. It can be shown that the sampling distribution of X0

2 is 
approximately the chi-square distribution with n - 1 degrees of freedom 
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The Chi-square Test 
Algorithm   

Step 1: Determine Order Statistics 

 R1<=R2<=…….Rn 

Step 2: Divided Range Rn – R1 in n equidistant intervals [ai,bi], such 
 that each interval has at least 5 observations. 

Step 3: Calculate for i = 1,......,N 

 Oi=N . { SN(bi) - SN(ai) }, 

 Ei=N .  { F(bi) – F(ai) } 

Step 4: Calculate 

 

 

Step 5: Determine for significant level a , X 2
a,n-1  
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Example 3.8 

Q.N > Use the chi-square test with a = 0.05 to test whether 
the data shown below are uniformly distributed.  

0.34  0.83  0.96  0.47  0.79  0.99  0.37  0.72  0.06  0.18  0.90 
0.76  0.99  0.30  0.71  0.17  0.51  0.43  0.39  0.26  0.25  0.79 
0.77  0.17  0.23  0.99  0.54  0.56  0.84  0.97  0.89  0.64  0.67 
0.82  0.19  0.46  0.01  0.97  0.24  0.88  0.87  0.70  0.56  0.56 
0.82  0.05  0.81  0.30  0.40  0.64  0.44  0.81  0.41  0.05  0.93 
0.66  0.28  0.94  0.64  0.47  0.12  0.94  0.52  0.45  0.65  0.10 
0.69  0.96  0.40  0.60  0.21  0.74  0.73  0.31  0.37  0.42  0.34 
0.58 0.19 0.11 0.46 0.22 0.99 0.78 0.39 0.18 0.75 0.73 0.79 
0.29 0.67 0.74 0.02 0.05 0.42 0.49, 0.49 0.05 0.62 0.78  
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Solution 
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 Above Table contains the essential computations for chi square test. The 
test uses n = 10 intervals of equal length, namely [0.0, 0.1), [0.1, 0.2), . . . , [0.9, 
1.0). The value of X2 is 3.4.  
 Here degree of freedom is n-1=10-1=9 and α=0.05. The tabulated value 
of X2 0.05, 9 =16.9.Since X0

2 is much smaller than the tabulated value of chi square, 
the null hypothesis of a uniform distribution is not rejected.  
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 Both  the  Kolmogorov-Smirnov  and  the  chi-square  test 
are  acceptable  for  testing  the  uniformity  of  a  sample  of  data, 
provided that the sample size is large. However, the 
Kolmogorov-Smirnov test is the more powerful of the two and is 
recommended.  Furthermore,  the  Kolmogorov-Smirnov  test  can 
be applied to small sample sizes, whereas the chi-square is valid 
only for large samples, say N>=50. 

 

 Imagine a set of 100 numbers which are being tested for 
independence  where  the  first  10  values  are  in  the  range  0.01-
0.10,  the  second  10  values  are  in  the  range  0.11-0.20,  and  so 
on.  This  set  of  numbers  would  pass  the  frequency  tests  with 
ease, but the ordering of the numbers produced by the generator 
would not be random. The tests in the remainder of this chapter 
are concerned with the independence of random numbers which 
are generated. The presentation of the tests is similar to that by 
Schmidt and Taylor [1970]. 
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Example 3.9 

Q.N > Use the chi-square test with a = 0.05 to test whether 
the data shown below are uniformly distributed 

 In  first  ranges  there  are  15  random  number  ,  in 
second  there  are  5  random  number,  in  3rd  there  are  10 
random number, in fourth there are 10 and in 5 th there are 
20 random number.  
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Example 3.10 

Q.N > Use the chi-square test with a = 0.99 to test whether 
the data shown below are uniformly distributed 

 In  first  ranges  there  are  10  random  number  ,  in 
second  there  are  10  random  number,  in  3rd  there  are  15 
random number, in fourth there are 15 , in 5 th there are 5 
random  number.  And then  6th  ,7th and  8th  has  10  ,  5  , 10 
random numbers. 
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Example 3.11 

Q.N > Use the chi-square test with a = 0.25 to test whether 
the data shown below are uniformly distributed 

 In  first  ranges  there  are  20  random  number  ,  in 
second  there  are  9  random  number,  in  3rd  there  are  15 
random number, in fourth there are 15 and in 5 th there are 
13 random number.  
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Example 3.12 

Q.N > Use the chi-square test with a = 0.75 to test whether 
the data shown below are uniformly distributed 

 In  first  ranges  there  are  25  random  number  ,  in 
second  there  are  15  random  number,  in  3rd  there  are  10 
random number, in fourth there are 17 and in 5 th there are 
13 random number.  
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Chi-Square Vs. K-S Test 
K-S test Chi-Square Test 

Small samples Large sample 

Continuous Distribution Discrete Distribution 

Difference between Observed and 
Expected cumulative probabilities 
(CDF) 

Differences between observed and 
hypothesized probabilities (PDFs or 
PMFs). 

Uses each observation in the sample 
without any grouping  
=> makes a better use of the data  
     Cell size is not a problem 

Group observation into a small 
number of cells 
=>Cell sizes effect the conclusion but 
no firm guidelines 
 

Exact Approximate 
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Test for independence includes the 
three types of tests as given below:  
1) Autocorrelation Test tests the correlation between 

numbers  and  compares  the  sample  correlation  to  the 
expected correlation of zero.  

2) Gap test Counts the number of digits that appear 
between repetitions of particular digit and then uses the 
Kolmogorov-Smirnov test to compare with the expected 
size of gaps,  

3) Poker  test:  Treats  numbers  grouped  together  as  a 
poker hand. Then the hands obtained are compared to 
what is expected using the chi-square test.  
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Tests for Autocorrelation  
 The tests for autocorrelation are concerned with the 
dependence between numbers in a sequence. As an example, consider 
the following sequence of numbers:  

0.12 0.01 0.23 0.28 0.89 0.31 0.64 0.28 0.83 
0.93 0.99 0.15 0.33 0.35 0.91 0.41 0.60 0.27 
0.75 0.88 0.68 0.49 0.05 0.43 0.95 0.58 0.19 
0.36 0.69 0.87 

 From a visual inspection, these numbers appear random, and they would 
probably pass all the tests presented to this point. However, an examination of the 
5th, 10th, 15th (every five numbers beginning with the fifth), and so on indicates a 
very large number in that position.  
 Now, 30 numbers is a rather small sample size to reject a random-number 
generator, but the notion is that numbers in the sequence might be related. In this 
particular  section,  a  method  for  determining  whether  such  a  relationship  exists  is 
described. The relationship would not have to be all high numbers. It is possible to 
have  all  low  numbers  in  the  locations  being  examined,  or  the  numbers  may 
alternately shift from very high to very low.   
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Tests for Autocorrelation  
 Autocorrelation Test is a statistical test that 
determines whether a random number generator is 
producing independent random number in a sequence. The 
test for the auto correlation is concerned with the 
dependence between numbers in a sequence. The test 
computes  the  auto  correlation  between  every  m  numbers 
(m is also known as lag) starting with ith index. 
 The variables involved in this test are:  
• m is the lag, the space between the number being tested.  
• i is the index or number from we start.  
• N is the number of random numbers generated.  
• M is the largest integer such that i+(M+1)m <= N  
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Tests for Autocorrelation  
• Now the autocorrelation between  

 Ri, Ri+m, Ri+2m,.……Ri+(M+1)m is computed as  

Simulation and Modeling / [Chapter 5] Nipun Thapa 60 

where Now the test Statics is 
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Tests for Autocorrelation  
Q.N.> Test whether the 3rd, 8th, 13th, and so on, numbers in the 
sequence  at  the  beginning  of  this  section  are  auto-correlated. 
(Use a = 0.05.) Here, i = 3 (beginning with the third number), m = 
5 (every five numbers), N = 30 (30 numbers in the sequence).  
Solution:  
First we calculate the value of M using the condition  
  i + (M+1)m<=N  
 since i=3, m=5, and N=30  
we have, 
  3 + (M +1)5 <= 30.  
i.e. 3+5M+5<=30  
I.e. 5M<=22  
i.e. M<=22/5      
Hence M=4  
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Then, ρ35 = 1/( 4 + 1)[ (0.23)(0.28) + (0.28)(0.33) +  
  (0.33)(0.27) + (0.27)(0.05) + (0.05)(0.36) ] – 
  0.25 = -0.1945  
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And  

σ35= √ (13(4) + 7) / 12(4 + 1) = 0.1280  

Then, the test statistic assumes the value 
 Z0 = -0.1945/0.1280 = -1.516  
Now, the critical value is 
Z0.025 = 1.96 (Zα/2 is taken in this test)  

Therefore, the hypothesis of independence cannot be rejected on the 
basis of this test.  
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0.12 0.01 0.23 0.28 0.89 0.31 0.64 0.28 0.83 0.93 
0.99 0.15 0.33 0.35 0.91 0.41 0.60 0.27 0.75 0.88 
0.68 0.49 0.05 0.43 0.95 0.58 0.19 0.36 0.69 0.87 
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Then, ρ35 = 1/( 4 + 1)[ (0.23)(0.28) + (0.28)(0.33) + (0.33)(0.27) +      
      (0.27)(0.05) + (0.05)(0.36) ] – 0.25 = -0.1945  
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0.12 0.01 0.23 0.28 0.89 0.31 0.64 0.28 0.83 
0.93 0.99 0.15 0.33 0.35 0.91 0.41 0.60 0.27 
0.75 0.88 0.68 0.49 0.05 0.43 0.95 0.58 0.19 
0.36 0.69 0.87 
 
Q.N.> Test whether the 2nd, 8th, 14th, and so on, numbers 
in the sequence at the beginning of this section are auto-
correlated. (Use a = 0.05.) Here, i = 2 (beginning with the 
second number), m = 6 (every six numbers), N = 30 (30 
numbers in the sequence). 
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0.12 0.01 0.23 0.28 0.89 0.31 0.64 0.28 
0.83 0.93 0.99 0.15 0.33 0.35 0.91 0.41 
0.60 0.27 0.75 0.88 0.68 0.49 0.05 0.43 
0.95 0.58 0.19 0.36 0.69 0.87 
Q.N.> Test whether the 6th, 10th, 14th, and so on, numbers 
in the sequence at the beginning of this section are auto-
correlated. (Use a = 0.05.) Here, i = 6 (beginning with the 
fifth  number),  m  =  4  (every  five  numbers),  N  =  30  (30 
numbers in the sequence).  
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0.12 0.01 0.23 0.28 0.89 0.31 0.64 0.28 
0.83 0.93 0.99 0.15 0.33 0.35 0.91 0.41 
0.60 0.27 0.75 0.88 0.68 0.49 0.05 0.43 
0.95 0.58 0.19 0.36 0.69 0.87 
Q.N.> Test whether the 5th, 10th, 15th, and so on, numbers 
in the sequence at the beginning of this section are auto-
correlated. (Use a = 0.05.) Here, i = 5 (beginning with the 
fifth  number),  m  =  5  (every  five  numbers),  N  =  30  (30 
numbers in the sequence).  
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0.12 0.01 0.23 0.28 0.89 0.31 0.64 0.28 
0.83 0.93 0.99 0.15 0.33 0.35 0.91 0.41 
0.60 0.27 0.75 0.88 0.68 0.49 0.05 0.43 
0.95 0.58 0.19 0.36 0.69 0.87 
Q.N.> Test whether the 2th, 12th, 22th, and so on, numbers 
in the sequence at the beginning of this section are auto-
correlated. (Use a = 0.05.) Here, i = 2 (beginning with the 
fifth  number),  m  =  10  (every  five  numbers),  N  =  30  (30 
numbers in the sequence).  

 

Simulation and Modeling / [Chapter 5] Nipun Thapa 67 https://collegenote.pythonanywhere.com



Gap test  
 The gap test is used to determine the significance of the 
interval  between  the  recurrences  of  the  same  digit.  A  gap  of 
length x occurs between the recurrences of some specified digit. 
The following example illustrates the length of gaps associated 
with the digit 3: 
 
4, 1, 3, 5, 1, 7, 2, 8, 2, 0, 7, 9, 1, 3, 5, 2, 7, 9, 4, 1, 6, 3 , 3, 9, 6, 
3, 4, 8, 2, 3, 1, 9, 4, 4, 6, 8, 4, 1, 3.  
 
 There  are  7  three’s  are  there.  Thus  only  six  gaps  can 
occur. The first gap is of length 10 and second gap of length 7 
and  third  gap  of  length  zero.  And  so  on.  Similarly  the  gap 
associated  with  other  digits  can  be  calculated.  The  theoretical 
probability of first gap (of length 10 for digit 3) can be calculated 
as   
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Gap test  

 The  probability  of  a  particular  gap  length  can  be 
determined by a Bernoulli trail.  

Simulation and Modeling / [Chapter 5] Nipun Thapa 69 

If we are only concerned with digits between 0 and 9, then  

The theoretical frequency distribution for randomly 
ordered digits is given by  
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Gap test  
1. Specify  the  CDF  (Cumulative  Distributive  frequency)  from 

theoretical frequency distribution given by, 
 𝐹(𝑥) = 1 − 0.9𝑥+1 

 Based on the selected class interval 
2. Arrange the observed sample of gaps in cumulative 

distribution with the same class 
3. Find 𝐷, the maximum deviation between 𝐹(𝑥) and 𝑆𝑁(𝑥) as 

equation, 
 𝐷= | 𝐹(𝑥) − 𝑆𝑁(𝑥) | 
Where SN (x)  =     𝑁𝑜.𝑜𝑓 𝑔𝑎𝑝𝑠 ≤ x  
       𝑡𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑔𝑎𝑝𝑠 

 
4. Determine  the  critical  value  of 𝐷𝛼  from  the  table  for  the 

specified value of α and sample size 𝑁. (KS table) 
5. If 𝐷𝑐𝑎𝑙  < 𝐷𝛼, Null hypothesis is not rejected. 
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Example 3.11 
Q.N->Based on the frequency with which gaps occur, 
analyze  the  110  digits  below  to  test  whether  they  are 
independent. Use α = 0.05. 

4, 1, 3, 5, 1, 7, 2, 8, 2, 0, 7, 9, 1, 3, 5, 2, 7, 9 4, 1, 6, 3, 3, 9, 
6, 3, 4, 8, 2, 3, 1, 9, 4, 4, 6, 8, 4, 1, 3, 8, 9, 5, 5, 7, 3, 9, 5, 9, 
8, 5, 3, 2, 2, 3, 7, 4, 7, 0, 3, 6, 3, 5, 9, 9, 5, 5 5, 0, 4, 6, 8, 0, 
4, 7, 0, 3, 3, 0, 9, 5, 7, 9, 5, 1, 6, 6, 3, 8, 8, 8, 9, 2, 9, 1, 8, 5, 
4, 4, 5, 0, 2, 3, 9, 7, 1, 2, 0, 3, 6, 3   
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Solution 

The number of gaps is given by the number of data values 
minus the number of distinct digits, or 110 —10 = 100 in the 
example. The numbers of gaps associated with the various 
digits are as follows:  
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Digit 0 1 2 3 4 5 6 7 8 9 

# of Gaps 7 8 8  17 10  13 7 8 9 13 
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Gap Length 

 
Frequency 

Relative        Cum.               Theoretical 
Frequency  Frequency    Frequency   |F(x) - SN(x)| 

0-3 35 0.35 0.35 0.3439 0.0061 

4-7 22 0.22 0.57 0.5695 0.0005 
8-11 17 0.17 0.74 0.7176 0.0224 
12-15 9 0.09 0.83 0.8147 0.0153 
16-19 5 0.05 0.88 0.8784 0.0016 
20-23 6 0.06 0.94 0.9202 0.0198 
24-27 3 0.03 0.97 0.9497 0.0223 
28-31 0 0.00 0.97 0.9657 0.0043 
32-35 0 0.00 0.97 0.9775 0.0075 
36-39 2 0.02 0.99 0.9852 0.0043 
40-43 0 0.00 0.99 0.9903 0.0003 
44-47 1 0.01 1.00 0.9936 0.0064 

S(X) F(X) 
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The critical value of D is given by D0.05 = 1.36 / √100 = 0.136  

Since  
 D = max |F(x) - SN(x) | = 0.0224  
  
 is less than D0.05, 
 
 we do not reject the hypothesis of independence on the basis of this test.  

If 𝐷𝑐𝑎𝑙  < 𝐷𝛼, Null hypothesis is not rejected. 
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Example 3.12 : Gap test 

Gap Length Frequency 

0-4 25 
5-9 15 
10-14 10 
15-19 3 
20-24 2 
25-29 0 
30-34 5 
35-39 10 
40-44 30 
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Q.N.> Based on the frequency with which gaps occur, analyze the digits below to 
test whether they are independent. Use α = 0.05. 
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Example 3.13 : Gap test 

Gap Length Frequency 

0-2 25 
3-5 20 
6-8 15 
9-11 3 
12-14 12 
15-17 0 
18-20 5 
21-23 15 
24-26 30 
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Q.N.> Based on the frequency with which gaps occur, analyze the digits below to 
test whether they are independent. Use α = 0.05. 
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Example 3.14 : Gap test 

Gap Length Frequency 

0-5 15 
6-10 20 
11-15 5 
16-20 3 
21-25 12 
26-30 15 
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Q.N.> Based on the frequency with which gaps occur, analyze the digits below to 
test whether they are independent. Use α = 0.2. 
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Example 3.15 : Gap test 

Gap Length Frequency 

0-10 5 
11-20 2 
21-30 15 
31-40 3 
41-50 10 
51-60 0 
61-70 15 
71-80 15 
81-90 10 
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Q.N.> Based on the frequency with which gaps occur, analyze the digits below to 
test whether they are independent. Use α = 0.05. 
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Example 3.16 : Gap test 

Gap Length Frequency 

0-9 15 
10-19 20 
20-29 15 
30-39 3 
40-49 10 
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Q.N.> Based on the frequency with which gaps occur, analyze the digits below to 
test whether they are independent. Use α = 0.05. 
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Example 3.17 : Gap test 

Gap Length Frequency 

0-1 25 
1-3 15 
4-6 10 
7-9 3 
10-12 2 
13-15 0 
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Q.N.> Based on the frequency with which gaps occur, analyze the digits below to 
test whether they are independent. Use α = 0.05. 
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Poker Test 

 The  Poker  Test  is  the  test  for  independence  based  on  
the frequency with which certain digits are repeated with  
in a series of numbers. 

 This  test  not  only  tests  for  the  randomness  of  the  
sequence of numbers, but also the digits comprising of  
each of the numbers. 
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Poker Test 

 The expected value of each of the combination of digits  
in  a  number  is  compared  with  the  observed  value  by  
means of the chi-square test for independence. 

 The  acceptance  is  done  if  the  observed  value  of  chi-  
square sums for all the possible combinations of digits is  
less  than  the  acceptable  value  for  the  given  degree  of  
freedom at the specified confidence interval. 
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Poker Test 

 This  test  gets  its  name  from  a  game  of  cards    called 
poker 

 This test not only tests the randomness of the  sequence 
of  numbers,  but  also  the  digits    comprising  of  each 
number 

 Every random number of five digits or every  sequence 
of five digits is treated as poker  hand. 
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Poker Test 

 71549 are five different digits 

 55137 would be pair 

 33669 would be two pairs 

 55513 would be three of a kind 

 44477 would be a full house 

 77774 would be four of a kind 

 88888 would be five of a kind 

• The occurrence of five of a kind is rare. 
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Poker Test 

• In 10,000 random and independent numbers  of five 
digits each, you may be expect the  following distribution 
of various combinations. 
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Five different digits 3024 or 30.24% 

pairs 5040 or 50.40 % 

Two-pairs 1080 or 10.80 % 

Three of a kinds 720 or 7.20 % 

Full houses 90 or 0.90 % 

Four of a kinds 45 or 0.45 % 

Five of a kinds 1 or 0.01 % 
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Poker Test 

 Poker Test - based on the frequency with which  certain 
digits are repeated. 

Example: 

0.255 0.577 0.331 0.414 0.828 0.909   0.303 
0.001...  

Note: a pair of like digits appear in each number  
generated. 
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Poker Test 

 Frequency with certain digits are repeated in a series 
of  numbers 

 Example 

• 0.255, 0.577, 0.414, 0.828, 0.909, 0.303, 0.001 

 Pair of like digits generated 

 For three digits: three possibilities 
•  All different 

•  All equal 

•  One pair of like digits 
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3  P(exactly one pair)   (0.1)(0.9)  0.27 
 2 

no. of possibilities 
Given a fixed digit, this digit is the same 

Given a fixed digit, this digit different 
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Poker Test 
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• P(three different digits)  
  P(second different from first) P(third different from first and second)   

  (0.9)(0.8)  0.72 

 
• P(three like digits)  
  P(second digit same as first) P(third digit same as first and second)  
  (0.1)(0.1)  0.01 

 

 
Poker test: 
 

• Measure observed frequency for the three cases  
Compute expected frequency Ei 

(probabilities*1000)  Perform chi-square test 
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Poker Test 
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In 3-digit numbers, there are only 3 possibilities.   

P(3 different digits) = 

 = P(2nd diff. from 1st) * P(3rd diff. from 1st & 2nd) 

 = (0.9) (0.8) = 0.72 

 

P(3 like digits) = 

 = P (2nd digit same as 1st) * P(3rd digit same as 1st) 

 = (0.1) (0.1) = 0.01 

 

P(exactly one pair) = 1 - 0.72 - 0.01 = 0.27 
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Example 3.18 

Q.N.>  A  sequence  of  1000  three-digit  numbers  has  been 
generated  and  an  analysis  indicates  that  680  have  three 
different  digits,  289  contain  exactly  one  pair  of  like  digits, 
and  31  contain  three  like  digits.  Based  on  the  poker  test, 
are these numbers independent ? Let α = 0.05. Test these 
numbers using poker test for three digits.  
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Solution 
Combination, i Observed 

Frequency,  
(Oi) 

Expected 
Frequency 

(Ei) 

(Oi-Ei) 
(Oi-Ei)2 / Ei 

Three Different digit 680 0.72X1000=720 -40 2.22 

Three Like digit 31 0.01X1000=10 21 44.10 

Exactly one pair 289 0.27X1000=270 19 1.33 

1000 1000 47.65 
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The appropriate degrees of freedom are one less than the number of class 
intervals. Since  
47.65  > X2 

0.05,2 = 5.99 (tabulated value), the independence of the numbers is 
rejected on the basis of this test. Here 2 or n-1 is the degree of freedom since 
there are only 3 (n) classes.  
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Example 3.19 

Q.N.> A sequence of three-digit numbers has been 
generated  and  an  analysis  indicates  that  380  have  three 
different  digits,  389  contain  exactly  one  pair  of  like  digits, 
and 231 contain three like digits. Based on the poker test, 
are these numbers independent ? Let α = 0.05. Test these 
numbers using poker test for three digits.  
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Example 3.20 

Q.N.> A sequence of three-digit numbers has been 
generated  and  an  analysis  indicates  that  320  have  three 
different  digits,  420  contain  exactly  one  pair  of  like  digits, 
and 160 contain three like digits. Based on the poker test, 
are these numbers independent ? Let α = 0.05. Test these 
numbers using poker test for three digits.  
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Example 3.21 

Q.N.> A sequence of three-digit numbers has been 
generated  and  an  analysis  indicates  that  300  have  three 
different  digits,  500  contain  exactly  one  pair  of  like  digits, 
and 200 contain three like digits. Based on the poker test, 
are these numbers independent ? Let α = 0.05. Test these 
numbers using poker test for three digits.  
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In four digit number, there are five different 
possibilities  
P(four different digits)  

    = 4c4 x 10/10 x 9/10 x 8/10 x 7/10 = 0.504  

P (one pair)  

    = 4c2 x10/10x1/10x9/10x8/10=0.432  

P (two pair)  

    = 4c2/2 x 10/10 x 1/10 x 9/10 x 1/10 = 0.027  

P (three digits of a kind)  

    = 4c3 x 10/10 x 1/10 x 1/10 x 9/10 = 0.036  

P (four digits of a kind)  

    = 4c4 x 10/10 x 1/10 x 1/10 x 1/10 = 0.001  
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Example 3.22 (TU 2067/ 10mars)  

Q.N.> Explain the independence test. A sequence of 1000 
four  digit  numbers  has  been  generated  and  an  analysis 
indicates the following combinations and frequencies.  
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solution 
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Example 3.23 (TU 2072/ 10 marks) 

•
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Combination i Observed Frequency 0 i 
Four different digit 
One pair 
Two pair 
Three like digits 
Four like digits 
  
  

                       565 
                       392 
                         17 
                         24 
                           2               
                      1000 
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•
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Example 3.24  (TU 2073/ 10 marks) 
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• What do you mean by uniformity test? Explain the Poker 
test with example. [                                                ] 
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Example 3.24  (TU 2071/ 10 marks) 
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Calculation of  Expected Value for Poker 
Test  of  5-Digit Random Numbers 

 5 different Digits 

     P(5diff)= 1 * 0.9 * 0.8 * 0.7 * 0.6 = 0.3024 

 1 Pair and 3 different digits 

   P(1pair)= 5C2  * 1 * 0.1 * 0.9 * 0.8 * 0.7 = 0.5040 

 2 Pairs 

   P(2pairs)= (5C2 )/2 * 3C2 * 1 * 0.1 * 0.9 * 0.1 * 0.8 = 0.108 

 3 of a kind 

   P(3same)= 5C3  * 1 * 0.1 * 0.1 * 0.9 * 0.8= 0.072 
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Calculation of  Expected Value for Poker 
Test  of  5-Digit Random Numbers 

 Full House 

   P(full)= 5C2  * 1 * 0.1 * 0.1 *0.9 * 0.1= 0.009 

 Four of a Kind 

     P(four)= 5C1  * 1 * 0.1 * 0.1 * 0.1 * 0.9 = 0.0045 

 Five of a Kind 

   P(five)= 1 * 0.1 * 0.1 * 0.1 * 0.1 = 0.0001 
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Q.N.1  Use  the  linear  congruential  method  to  generate  a  sequence  of 
random  numbers  with  X0  =  17,  a=  10,  c  =  43,  and  m  =  50.Random 
numbers between zero and 1 can be generated by (Ri =Xi/m) 
 
Q.N.2 .Let m = 100, a = 29, and X0 = 63, and generate a sequence c 
random  integers.  Find  first  5  random  number  generate  using  any 
suitable method?? 
 
Q.N.3  Suppose  that  the  five  numbers  0.4  ,  0.8,  0.34,  0.06,  0.3  were 
generated,  and  it  is  desired  to  perform  a  test for  uniformity  using  the 
Kolmogorov-Smirnov  test  with  a  level  of  significance  a  of  0.05.  (from 
Table A.8 for a = 0.05 and N= 5, is 0.565.) 
 
Q.N.4 Use the chi-square test with a = 0.99 to test whether the data 
shown below are uniformly distributed 
 In first ranges there are 30 random number , in second there 
are  9  random  number,  in  3rd  there  are  25  random  number,  in  fourth 
there  are  10  and  in  5 th  there  are  15  random  number.  (From  table 
X2

0.99,4= 0.297) 
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0.12 0.01 0.23 0.28 0.89 0.31 0.64 0.28 
0.83 0.93 0.99 0.15 0.33 0.35 0.91 0.41 
0.60 0.27 0.75 0.88 0.68 0.49 0.05 0.43 
0.95 0.58 0.19 0.36 0.69 0.87 
Q.N.5> Test  whether the 5th, 10th, 15th, and so on, 
numbers  in  the  sequence  at  the  beginning  of  this  section 
are auto-correlated. (Use a = 0.05.) Here, i = 5 (beginning 
with the fifth number), m = 5 (every five numbers), N = 30 
(30 numbers in the sequence). {Z0.025 = 1.96 (Zα/2 is taken in 
this test)} 
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Q.N.6.  
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300 
400 
150 

35 
15 

Based on the poker test, are these numbers independent 
? Let α = 0.05. Test these numbers using poker test for 
four digits.  
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Gap Length Frequency 

0-4 35 
5-9 5 
10-14 10 
15-19 4 
20-24 1 
25-29 0 
30-34 5 
35-39 15 
40-44 25 
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Q.N.7> Based on the frequency with which gaps occur, analyze the digits below 
to test whether they are independent. Use α = 0.05. 

The critical value of D is given by D0.05 = 1.36 / √100 = 0.136  
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Q.N.8> A sequence of 1000 three-digit numbers has been 
 generated  and  an  analysis  indicates  that  780  have 
 three different digits, 189 contain exactly one pair of 
 like digits, and 31 contain three like digits. Based on 
 the poker test, are these numbers independent ? Let 
 α  =  0.05.  Test  these  numbers  using  poker  test  for 
 three digits. {X2 

0.05,2 = 5.99 (tabulated value)} 
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Non Uniform Random Number Generation / 
Random Variate generation  
 A random variable is a measurable mapping having 
some distribution, and a random Variate is just a member 
of the co-domain of a random variable. A  random 
Variate is a particular outcome of a random variable.  
 Random Variates are the samples generated 
from  a  known  distribution  i.e.  Random  Variable  and 
Random Variates have an inverse relationship.  
 Suppose X is a random variable which stands for the 
outcome of tossing a fair dice. So X can take value from 1 
through  6  with  equal  probability  of  1/6.  Now  you  actually 
toss a dice and get a number 4. This number is a particular 
outcome of X, and thus a random Variate. If you toss again, 
you may get another different value.  
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1. Non Uniform Transformation Method / Inverse 
Transform Method  

 The  inverse  transform  technique  can  be  used  to 
sample from the exponential, uniform, triangular distribution 
etc. by inversing the CDF of those probability distributions. 
The  inverse  transform  technique  can  be  utilized  for  any 
distribution when the cdf, F(x), is of a form that its inverse, 
F-1 can be computed easily.  
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a) Exponential Distribution  

 
The exponential distribution has the probability function (pdf)  
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1. Non Uniform Transformation Method / Inverse 
Transform Method  
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a) Exponential Distribution  

The random Variate generation process is summarized in 
following steps:  
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Equation (1) is called random Variate generator for the exponential distribution. 
In general equation (1) is written as X = F -1(R)  
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Example 3.16 : Generation of Exponential Variates Xi 
with mean 1 (λ=1), given random numbers Ri  
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Solution:  
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Example 3.18 : Generation of Exponential Variates Xi 
with number of occurrence per unit time is 3 , given 
random numbers Ri  
i 1 2 3 4 5 6 7 8 9 

Ri 0.32 0.2 0.01 0.121 0.55 0.11 0.4 0.7 0.22 
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Example 3.19 : Generation of Exponential Variates Xi 
with number of occurrence per unit time is 2 , given 
random numbers Ri  
i 1 2 3 4 5 6 7 8 9 

Ri 0.231 0.12 0.11 0.021 0.45 0.112 0.54 0.731 0.12 
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Example 3.20: Generation of Exponential Variates Xi 
with number of occurrence per unit time is 5 , given 
random numbers Ri  
i 1 2 3 4 5 6 7 8 9 

Ri 0.1 0.2 0.01 0.31 0.435 0.512 0.514 0.173 0.122 
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Example 3.17 : Generation of Exponential Variates Xi 
with number of occurrence per unit time is 8 , given 
random numbers Ri  
i 1 2 3 4 5 6 7 8 9 

Ri 0.2 0.1 0.411 0.121 0.415 0.312 0.154 0.531 0.132 
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Example 3.17 : Generation of Exponential Variates Xi 
with number of occurrence per unit time is 4 , given 
random numbers Ri  
i 1 2 3 4 5 6 7 8 9 

Ri 0.261 0.172 0.11 0.721 0.745 0.172 0.574 0.771 0.172 
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b) Uniform Distribution:  
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Generation of Uniform Distribution Xi with number of given 
random numbers Ri , where a=0.2, b=0.9 

i 1 2 3 4 5 6 7 8 9 

Ri 0.261 0.172 0.11 0.721 0.745 0.172 0.574 0.771 0.172 
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Generation of Uniform Distribution Xi with number of given 
random numbers Ri , where a=0.15, b=0.8 

i 1 2 3 4 5 6 7 8 9 

Ri 0.2 0.1 0.411 0.121 0.415 0.312 0.154 0.531 0.132 
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Generation of Uniform Distribution Xi with number of given 
random numbers Ri , where a=0.2, b=0.9 

i 1 2 3 4 5 6 7 8 9 

Ri 0.1 0.2 0.01 0.31 0.435 0.512 0.514 0.173 0.122 
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c) Triangular Distribution  
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Generation of Triangular Distribution Ri with number of given 
random numbers Xi 

i 1 2 3 4 5 6 7 8 9 

xi 0.1 0.2 0.01 1.31 0.435 0.512 0.514 1.173 2.122 
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Generation of Triangular Distribution Ri with number of given 
random numbers Xi 

i 1 2 3 4 5 6 7 8 9 

xi 0.231 1.2 0.01 1.31 2.435 0.512 0.514 1.173 2.122 
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2. Acceptance /Rejection method  
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Finished Unit 3 !!!! 
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