
Transport Layer
 It is responsible for process-to-process delivery of the

entire message.

 TL looks after the delivery of entire message considering all
its packets & make sure that all packets are in order. On the
other hand n/w layer treated each packet independently.

 At the receiver side, TL provides services to application
layer & takes services form n/w layer.

 At the source side, TL receives message from upper layer
into packets and reassembles these packets again into
message at the destination.

16

For more notes visit https://collegenote.pythonanywhere.com

Transport Layer

 Transport Layer provides two types of services:

 Connection Oriented Transmission: In this type
of transmission the receiving devices sends an
acknowledge back to the source after a packet or group
of packet is received. It is slower transmission method.

 Connectionless Transmission: In this type of
transmission the receiving devices does not sends an
acknowledge back to the source. It is faster
transmission method.

17

For more notes visit https://collegenote.pythonanywhere.com

Functions of Transport Layer

 Segmentation of message into packet &
reassembly of packets into message.

 Port addressing: Computers run several processes.
TL header include a port address with each process.

 Flow Control: Flow control facility prevents the
source form sending data packets faster than the
destination can handle.

 Error control: TL ensures that the entire message
arrives at the receiving TL without error.

18

For more notes visit https://collegenote.pythonanywhere.com

Contents

1. Process to Process delivery
1. Multiplexing & De multiplexing

2. Client Server

3. Port Numbers

4. Socket Address

2. Connection Oriented Vs
Connection Less

3. Reliable Vs Unreliable

4. TCP
1. Features

2. TCP Segment

3. 3-Way Handshaking Protocol

5. UDP
1. Features

2. UDP segments

For more notes visit https://collegenote.pythonanywhere.com

Transport Layer overview

• Convert data from upper layer (Application) to segments

• Transport layer is responsible for process-to process delivery and
congestion control

• Distinguish a particular process in a system using port number

• 3 type of delivery mechanisms available TCP, UDP,SCTP

• Connection oriented (TCP) and connection less(UDP)

• Reliable (TCP) and unreliable (UDP) services

• Port address provide process to process delivery

For more notes visit https://collegenote.pythonanywhere.com

1. Process to Process Delivery

• The transport layer is responsible for process-to-process delivery

• Types of data delivering
1. Node to node delivery (data link Layer)
2. Host to host delivery (Network Layer)
3. Process to process delivery (Transport Layer)

• Process to process delivery is needed because many process will be
running in one host simultaneously

• To identify, from which process is sending the request source port address
is assigned

• To identify, to which process request is send is destination address is
assigned

For more notes visit https://collegenote.pythonanywhere.com

1. Process to Process Delivery

Figure: Process to Process Delivery

• Two processes communicate in a client/server relationship

For more notes visit https://collegenote.pythonanywhere.com

1.1. Multiplexing & De-multiplexing

• The addressing mechanism allows multiplexing and De-multiplexing
by the transport layer

For more notes visit https://collegenote.pythonanywhere.com

1.1.1. Multiplexing

• At the sender site, there may be several processes that need to send
packets. However, there is only one transport layer protocol at any
time. This is a many-to-one relationship and requires multiplexing.

• The protocol accepts messages from different processes,
differentiated by their assigned port numbers. After adding the
header, the transport layer passes the packet to the network layer

For more notes visit https://collegenote.pythonanywhere.com

1.1.2. De-multiplexing

• At the receiver site, the relationship is one-to-many and requires De-
multiplexing. The transport layer receives datagrams from the
network layer.

• After error checking and dropping of the header, the transport layer
delivers each message to the appropriate process based on the port
number

For more notes visit https://collegenote.pythonanywhere.com

1.2. Client Server

• Most common way to achieve process-to-process communication in
internet is through the client/server paradigm.

• A process on the local host, called a client, needs services from a
process usually on the remote host, called a server

• Operating systems today support both multiuser an
multiprogramming environments.

• A remote computer can run several server programs at the same
time, just as local computers can run one or more client programs at
the same time

For more notes visit https://collegenote.pythonanywhere.com

1.2. Client Server

• Here 2 types of address is needed for communication Host Address
and Process Port number

• For communication, we must define the following:
1. Local host : IP address of Client

2. Local process : Port number of client

3. Remote host: IP address of Server

4. Remote process: Port address of server

For more notes visit https://collegenote.pythonanywhere.com

1.2. Client Server

Figure Client One sending HTTP(80) request to server and client 2
sending

For more notes visit https://collegenote.pythonanywhere.com

1.3. Port Numbers

• Port Address (Number) is needed to choose among multiple
processes running on the destination host

• The destination port number is needed for delivery and the source
port number is needed for the reply

• Port number is 16 bit integer

• Range between 0-65535

• Source port number is chosen randomly(Dynamic range)

• Destination port is chose based on application(For ex, HTTP-80, FTP-
20,21)

For more notes visit https://collegenote.pythonanywhere.com

1.3. Port Numbers

• Data is sent from system one have process with port number 52000
and other system have a process with port number 13

For more notes visit https://collegenote.pythonanywhere.com

1.3.1. Port numbers- IANA ranges

• The lANA (Internet Assigned Number Authority) has divided the port
numbers into three ranges:

• Well known ports (Range between 0-1023): Controlled by IANA

• Registered ports (Range between 1024-49151): not controlled by
IANA but can be register to prevent duplication

• Dynamic(Private) ports (Range between 49152-65535): The ports
ranging from 49,152 to 65,535 are neither controlled nor registered.
They can be used by any process

For more notes visit https://collegenote.pythonanywhere.com

1.4. Socket Address

• Process-to-process delivery needs two identifiers, IP address and the
port number, at each end to make a connection

• Combination of an IP address and a port number is called a socket
address

• The client socket address defines the client process uniquely just as
the server socket address defines the server process uniquely

• A transport layer protocol (TCP/UDP)needs a pair of socket addresses:
the source socket address and the destination socket address

For more notes visit https://collegenote.pythonanywhere.com

2.1 Connection Less(UDP)

• Packets are sent from one party to another with no need for
connection establishment or connection release

• The packets are not numbered

• They may be delayed or lost or may arrive out of sequence

• There is no acknowledgment

• UDP is connectionless

For more notes visit https://collegenote.pythonanywhere.com

2.2 Connection Oriented(TCP)

• Connection is first established between the sender and the receiver

• Data are transferred

• Connection is released

• TCP and SCTP are connection-oriented protocols

For more notes visit https://collegenote.pythonanywhere.com

3 Reliable vs Unreliable

Reliable

• Have error control

• Have Flow control

• Connection oriented

• Have ACK and sequence number

• TCP &SCTP

Unreliable

• No error control

• No Flow control

• Connectionless

• No ACK and sequence number

• UDP

For more notes visit https://collegenote.pythonanywhere.com

4. Transmission Control Protocol(TCP)

• Connection oriented & Reliable Service

• TCP uses flow and error control mechanisms at the transport level

• TCP uses port numbers for communication

Well Known TCP Ports
• FTP- 20(data), 21(control)
• TELNET- 23
• SMTP-25
• DNS-53
• HTTP-80
• RPC-111

For more notes visit https://collegenote.pythonanywhere.com

4.1. TCP Features

• Stream delivery (No boundary defined)

• Full duplex communication

• Numbering systems
• TCP software keeps track of the segments being transmitted or received,

there is no field for a segment number value in the segment header

• The bytes of data being transferred in each connection are numbered by TCP.
The numbering starts with a randomly generated number

• Sequence Number:
• The sequence number for each segment is the number of the first byte

(randomly assigned) carried in that segment

For more notes visit https://collegenote.pythonanywhere.com

4.1. TCP Features

• Acknowledgment number:
• Full duplex sequence number and Acknowledgment in same segment

• If receiver receives x bytes Ack number is equal to x+1

• Flow control& Error control:
• TCP uses byte oriented flow & error control

• Congestion control
• Also control the congestion in the network

For more notes visit https://collegenote.pythonanywhere.com

4.1.1 TCP Sequence numbering

• Suppose a TCP connection is transferring a file of 5000 bytes. The first
byte is numbered 1O,001. each carrying segment carry 1000 bytes
The following shows the sequence number for each segment:

• Segment 1 Sequence Number: 10,001 (range: 10,001 to 11,000)

• Segment 2 Sequence Number: 11,001 (range: 11,001 to 12,000)

• Segment 3 Sequence Number: 12,001 (range: 12,001 to 13,000)

• Segment 4 Sequence Number: 13,001 (range: 13,001 to 14,000)

• Segment 5 Sequence Number: 14,001 (range: 14,001 to 15,000)

For more notes visit https://collegenote.pythonanywhere.com

4.2. TCP Segment Format

For more notes visit https://collegenote.pythonanywhere.com

4.2. TCP Segment Format

• Source port address: Port address of sender

• Destination port address: port address of receiver

• Sequence number: 32 bit integer usually represented by first bytes
number

• Acknowledge number:32 bit integer, x bytes are received Ack will be
x+1

• Header Length (HLEN) : usually between 20-60 bytes

• Reserved: future use

For more notes visit https://collegenote.pythonanywhere.com

4.2. TCP Segment Format

• Flag (6 bits):
1. URG: Urgent pointer is valid

2. ACK: Acknowledgment is valid

3. PSH: Request for push

4. RST: Reset the connection

5. SYN: Synchronize sequence numbers

6. FIN: Terminate the connection

• Window size
• This field defines the size of the window, in bytes, that the other party must

maintain. 16 bit so maximum size of the window is 65,535 bytes. Usually
determined by reciever

For more notes visit https://collegenote.pythonanywhere.com

4.2. TCP Segment Format

• Urgent pointer.
• This l6-bit field, which is valid only if the urgent flag is set, is used when the

segment contains urgent data.

• Options
• There can be up to 40 bytes of optional information in the TCP header.

For more notes visit https://collegenote.pythonanywhere.com

4.3. 3-Way Handshaking

• TCP is connection oriented which means before data transfer
connection should be established

• Step in TCP communication
1. Connection establishment

2. Data Transfer

3. Connection termination

• Connection is established with help of 3 way handshaking protocol

• Connection termination is also done with 3 way handshaking protocol

For more notes visit https://collegenote.pythonanywhere.com

4.3.1. Connection Establishment (Handshaking)

For more notes visit https://collegenote.pythonanywhere.com

4.3.1. Connection Establishment (Handshaking)

• SYN-Synchronization message used for connection establishment

• ACK- Acknowledgement

Steps

1. First client send SYN message to server

2. Server responds ACK to SYN and SYN to client

3. Client responds ACK to SYN and connection is established

For more notes visit https://collegenote.pythonanywhere.com

4.3.2. Data Transfer(ACK Number + SEQ Number)

For more notes visit https://collegenote.pythonanywhere.com

4.3.3. Connection Termination (Handshaking)

For more notes visit https://collegenote.pythonanywhere.com

4.3.3. Connection Termination (Handshaking)

• FIN(Finish) – Connection Termination

• ACK- Acknowledgement

Steps

1. First client send FIN message to server

2. Server responds ACK to FIN from client and send FIN to client

3. Client responds ACK to FIN and connection is established

For more notes visit https://collegenote.pythonanywhere.com

5. User Datagram Protocol(UDP)

• Connection less & Unreliable Service

• No flow and error control mechanisms at the transport level

• UDP uses port numbers for communication

Well Known TCP Ports
• Daytime-13

• DNS-53

• TFTP-69

• RPC-111

• NTP-123

For more notes visit https://collegenote.pythonanywhere.com

5.1. Features of UDP

• Connectionless:
• No connection is established before data transfer

• user datagram(segment) sent by UDP is an independent datagram

• Flow and Error Control:
• No error flow control (Only optional error checking)

• No retransmission

• No acknowledgments

For more notes visit https://collegenote.pythonanywhere.com

5.2. UDP Segment

For more notes visit https://collegenote.pythonanywhere.com

5.2. UDP Segment

• Source port number(16 bits)
• This is the port number used by the process running on the source host
• Range 0-65535

• Destination port number(16 bits)
• This is the port number used by the process running on the destination host
• Range 0-65535

• Length
• Defines the total length of the user datagram, header plus data.
• Length ranges between 8 to 65,535 bytes

• Checksum
• For error checking

For more notes visit https://collegenote.pythonanywhere.com

Contents

1. Congestion

2. Congestion Control
1. Open Loop

2. Closed Loop

3. Traffic Shaping
1. Leakey Bucket

2. Token Bucket

4. TCP Congestion Control

For more notes visit https://collegenote.pythonanywhere.com

Introduction

• The main focus of congestion control and quality of service is data
traffic

• Traffic descriptors are qualitative values that represent a data flow

For more notes visit https://collegenote.pythonanywhere.com

Introduction

• 3 Traffic Profiles

For more notes visit https://collegenote.pythonanywhere.com

1. Congestion

• Load of network  The number of packets sent to the network

• Capacity of network  The number of packets that can be handle

• Congestion occurs when the load of network is greater than capacity
of network

• Congestion occurs because of the following factor
1. Processing capacity of router

2. No of Packets in input and output interface

For more notes visit https://collegenote.pythonanywhere.com

2. Congestion Control

• Congestion control refers to techniques and mechanisms that can
either prevent congestion, before it happens, or remove congestion,
after it has happened

• Congestion control mechanisms into two broad categories:
1. Open-loop congestion control (prevention)

2. Closed-loop congestion control (removal)

For more notes visit https://collegenote.pythonanywhere.com

2. Congestion Control

For more notes visit https://collegenote.pythonanywhere.com

2.1. Open Loop Congestion

• Congestion Prevention mechanism

• Policies are applied to prevent congestion before it happens

• Congestion control is handled by either the source or the destination
1. Retransmission policy

2. Windowing policy

3. Acknowledge policy

4. Discard policy

5. Admission policy

For more notes visit https://collegenote.pythonanywhere.com

2.1.1. Retransmission policy

• Retransmission is sometimes unavoidable

• If the sender feels that a sent packet is lost or corrupted, the packet
needs to be retransmitted

• Retransmission in general may increase congestion in the network

• Good retransmission policy can prevent congestion

• The retransmission policy and the retransmission timers must be
designed to optimize efficiency and at the same time prevent
congestion

For more notes visit https://collegenote.pythonanywhere.com

2.1.2.Windowing policy

• The Selective Repeat window is better than the Go-Back-N window
for congestion control

• In the Go-Back-N window, when the timer for a packet times out,
several packets may be resent, even if some may have arrived safe
and sound at the receiver

• The Selective Repeat window, on the other hand, tries to send the
specific packets that have been lost or corrupted

For more notes visit https://collegenote.pythonanywhere.com

2.1.3. Acknowledge Policy

• Acknowledgments are also part of the load in a network

• The acknowledgment policy imposed by the receiver may also affect
congestion

• If receiver acknowledges every packet there is change for congestion
in network(Stop and wait)

• If the receiver does not acknowledge every packet it receives, it may
slow down the sender and help prevent congestion. (Sliding window
like Go back-N and Selective repeat)

For more notes visit https://collegenote.pythonanywhere.com

2.1.4. Discard Policy

• A good discarding policy by the routers may prevent congestion and
at the same time may not harm the integrity of the transmission

• According to priority packet is discarded

• Less sensitive packets should be discarded

For more notes visit https://collegenote.pythonanywhere.com

2.1.5. Admission Policy

• Prevent congestion in virtual-circuit networks

• Before creating virtual circuit check the check the resource
requirement

• A router can deny establishing a virtual circuit connection if there is
congestion in the network or if there is a possibility of future
congestion

For more notes visit https://collegenote.pythonanywhere.com

2.2. Closed-Loop Congestion Control

• Closed-loop congestion control mechanisms try to alleviate
congestion after it happens

• Several mechanisms have been used by different protocols, They are
1. Back pressure

2. Choke packet

3. Implicit signalling

4. Explicit signalling
1. Forward signalling

2. Backward signalling

For more notes visit https://collegenote.pythonanywhere.com

2.2.1. Back Pressure

• Backpressure refers to a congestion control mechanism in which a
congested node stops receiving data from the immediate upstream
node or nodes.

• Backpressure is a node-to-node congestion control

• Starts from congested node propagates, in the opposite direction of
data flow, to the source

• Backpressure technique can be applied only to virtual circuit

For more notes visit https://collegenote.pythonanywhere.com

2.2.2. Choke packet

• A choke packet is a packet sent by a node to the source to inform it of
congestion

• Warning is from the congested encountered router to the source
station directly

• Intermediate nodes doesn’t know about congestion.

For more notes visit https://collegenote.pythonanywhere.com

2.2.3. Implicit Signalling

• No communication between the congested nodes and the source

• Source guesses that there is a congestion somewhere in the network
from other symptoms

• Signals like acknowledgement is used

• If ACK is delayed the source assume there is congestion in
destination and slows down the data transfer

• Used mainly in TCP network

For more notes visit https://collegenote.pythonanywhere.com

2.2.4. Explicit Signalling

• The node that experiences congestion can explicitly send a signal to
the source or destination

• Here only difference from choke packet is no separate packet is used
where as in the choke packet separate packet is used

• It is used in Frame relay

• 2 types of signalling
1. Forward signalling

2. Backward signalling

For more notes visit https://collegenote.pythonanywhere.com

2.2.4.1. Forward Explicit Signalling

• A bit can be set in a packet moving in the direction of the congestion

• This bit can warn the destination that there is congestion

• The receiver in this case can use policies, such as slowing down the
acknowledgments, to alleviate the I congestion.

For more notes visit https://collegenote.pythonanywhere.com

2.2.4.2. Backward Explicit Signalling

• A bit can be set in a packet moving in the direction opposite to the
congestion

• This bit can warn the source that there is congestion and that it needs
to slow down to avoid the discarding of packets

For more notes visit https://collegenote.pythonanywhere.com

3. Traffic Shaping(QoS)

• Traffic shaping is a mechanism to control the amount and the rate of
the traffic sent to the network

• Two techniques can shape traffic
1. Leaky bucket

2. Token bucket

For more notes visit https://collegenote.pythonanywhere.com

3.1. Leaky Bucket

If a bucket has a small hole at the bottom, the water leaks from the
bucket at a constant rate as long as there is water in the bucket. The
rate at which the water leaks does not depend on the rate at which the
water is input to the bucket unless the bucket is empty

NB: In Network Bucket is router and water is data packets

For more notes visit https://collegenote.pythonanywhere.com

3.1. Leaky Bucket

NB: In the figure, we assume that the network has committed a bandwidth of
3 Mbps for a host. The use of the leaky bucket shapes the input traffic to
make it conform to this commitment. The host sends a burst of data at a rate
of 12 Mbps for 2 s, for a total of 24 Mbits of data. The host is silent for 5 s
and then sends data at a rate of 2Mbps for 3 s, for a total of 6 Mbits of data.
In all, the host has sent 30 Mbits of data in 10 s

• The input rate can vary, but the output rate remains constant

• Similarly, in networking, a technique called leaky bucket can smooth out
bursty traffic, Bursty chunks are stored in router and sent out at an average
rate

• It may also drop the packet if the bucket is full

For more notes visit https://collegenote.pythonanywhere.com

3.1.1. Leaky bucket Implementation

For more notes visit https://collegenote.pythonanywhere.com

3.1.1. Leaky bucket Implementation

• Process removes a fixed number of packets from the queue at each
tick of the clock

• If the traffic consists of variable-length packets, the fixed output rate
must be based on the number of bytes or bits.

• The following is an algorithm for variable-length packets:
1. Initialize a counter to n at the tick of the clock.

2. If n is greater than the size of the packet, send the packet and decrement
the counter by the packet size. Repeat this step until n is smaller than the
packet size.

3. Reset the counter and go to step 1

For more notes visit https://collegenote.pythonanywhere.com

3.1.2. Token Bucket

• The host can send bursty data as long as the bucket is not empty

• Token bucket algorithm allows idle hosts to accumulate credit for the
future in the form of tokens

• For each tick of the clock, the system sends n tokens to the bucket

• The system removes one token for every cell (or byte) of data sent

For example, if n is 100 and the host is idle for 100 ticks, the bucket
collects 10,000 tokens. Now the host can consume all these tokens in
one tick with 10,000 cells, or the host takes 1000 ticks with 10 cells per
tick

For more notes visit https://collegenote.pythonanywhere.com

3.1.2. Token Bucket

For more notes visit https://collegenote.pythonanywhere.com

3.1.2. Token Bucket

• The token bucket can easily be implemented with a counter
1. The token is initialized to zero

2. Each time a token is added, the counter is incremented by 1

3. Each time a unit of data is sent, the counter is decremented by 1

4. When the counter is zero, the host cannot send data

For more notes visit https://collegenote.pythonanywhere.com

4. Congestion Control in TCP

• TCP uses congestion control to avoid congestion or alleviate
congestion in the network

1. Congestion Window

2. Congestion Policy
1. Slow start

2. Congestion Avoidance

3. Congestion Detection

For more notes visit https://collegenote.pythonanywhere.com

4.1. Congestion Window

• Sender can send only that amount of data before waiting for an
acknowledgment, the amount data is termed a window size

• The sender has two pieces of information:
1. Receiver window size : Maximum available buffer size of receiver

2. Congestion window size : Congestion window size is determined by
congestion policy

• Window size >= minimum of receiver window size , congestion
window size

For more notes visit https://collegenote.pythonanywhere.com

4.2. Congestion policy

• Handling of congestion is done by 3 phases
1. Slow start

2. Congestion avoidance

3. Congestion detection

For more notes visit https://collegenote.pythonanywhere.com

4.2.1. Slow Start

• Size of the congestion window increases exponentially until it reaches
a threshold

For more notes visit https://collegenote.pythonanywhere.com

4.2.2. Congestion Avoidance

• Congestion Avoidance uses Additive inverse

• Congestion window increases additively until congestion is detected

• Slow-start phase stops and the additive phase begins

For more notes visit https://collegenote.pythonanywhere.com

4.2.3. Congestion Detection

• If congestion occurs, the congestion window size must be decreased

• The only way the sender can guess that congestion has occurred is by
the need to retransmit a segment

• However, retransmission can occur in one of two cases:
1. when a timer times out

2. when three ACKs are received

• In both cases, the size of the threshold is dropped to one-half, a
multiplicative decrease

For more notes visit https://collegenote.pythonanywhere.com

