
Unit 5

Working with Database

1



Database

 A database is an organized collection of structured information, or data,
typically stored electronically in a computer system.

 A database is usually controlled by a database management system (DBMS).

 The main purpose of the database is to operate a large amount of
information by storing, retrieving, and managing data.

 Data within the most common types of databases in operation today is
typically modeled in rows and columns in a series of tables to make
processing and data querying efficient.

 Most databases use Structured Query Language (SQL) for writing and
querying data

 There are many databases available like SQL Server, Oracle, MySQL,
MongoDB, PostgreSQL, Sybase, Informix, etc.

2



SQL Server

 SQL Server is a relational database management system, or

RDBMS, developed and marketed by Microsoft.

 Similar to other RDBMS software, SQL Server is built on top of

SQL, a standard programming language for interacting with the

relational databases.

 SQL server is tied to Transact-SQL, or T-SQL, the Microsoft’s

implementation of SQL that adds a set of proprietary

programming constructs.

3



Download and Setup SQL Server

 Go to URL: https://www.microsoft.com/en-in/sql-server/sql-

server-downloads

 Download Free Edition of MS SQL Server. Either Developer or

Express Edition

 During installation, remember these:

◦ In Instance Configuration Screen, choose Default Instance

◦ In Database Engine Configuration Screen, choose Mixed Mode(SQL

Server authentication and Windows Authentication) and Enter

Password

◦ Then follow Next Button.
4

https://www.microsoft.com/en-in/sql-server/sql-server-downloads


5



Install SQL Sever Management Studio

 Get SSMS from this url - https://docs.microsoft.com/en-

us/sql/ssms/download-sql-server-management-studio-

ssms?view=sql-server-2017

 Install SSMS

 After install, search Microsoft SQL Server Management Studio and

run

 You will see the screen as shown.

 On Authentication, Select SQL Server Authentication. For User name

enter sa and for password, enter the one that use provide during

installation.
6

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017


7



ADO.NET Basics

 ADO stands for Microsoft ActiveX Data Objects.

 The ADO.NET is one of the Microsoft’s data access technology which is used to

communicate between the .NET Application (Console, WCF, WPF, Windows,

MVC, Web Form, etc.) and data sources such as SQL Server, Oracle, MySQL, XML

document, etc.

 It has classes and methods to retrieve and manipulate data.

 The following are a few of the .NET applications that use ADO.NET to connect to

a database, execute commands and retrieve data from the database.

◦ ASP.NET Web Applications

◦ Console Applications

◦ Windows Applications.
8



2 Types of Connection Architectures

1. Connected architecture:

◦ the application remains connected with the database
throughout the processing.

2. Disconnected architecture:

◦ the application automatically connects/disconnects during the
processing.

◦ The application uses temporary data on the application side
called a DataSet.

9



Understanding ADO.NET and its class library

10

Dot Net
Applications

Web

Windows

Console

Any Other. . .

ADO. NET

System.Data.SqlClient

System.Data.OracleClient

SQL Server

OleDb

Odbc

Other Data Sources

System.Data.OleDb

Command

 DataReader

DataAdaptor

System.Data.Odbc

Connection

Oracle

Data Set



Important Classes in ADO.NET

1. Connection Class

2. Command Class

3. DataReader Class

4. DataAdaptor Class

5. DataSet Class

Connection Class

 In ADO.NET, we use connection classes to connect to the database.

 These connection classes also manage transactions and connection
pooling.

11



Important Classes in ADO.NET

Command Class

provides methods for storing and executing SQL statements and Stored
Procedures. Various commands that are executed by the Command Class:

a. ExecuteReader:

◦ Returns data to the client as rows.

◦ This would typically be an SQL select statement or a Stored Procedure
that contains one or more select statements. T

◦ this method returns a DataReader object that can be used to fill a
DataTable object or used directly for printing reports and so forth.

12



Important Classes in ADO.NET

DataReader Class

 The DataReader is used to retrieve data.

 It is used in conjunction with the Command class to execute an SQL Select
statement and then access the returned rows.

DataAdapter Class

 The DataAdapter is used to connect DataSets to databases.

 The DataAdapter is most useful when using data-bound controls in
Windows Forms, but it can also be used to provide an easy way to manage
the connection between your application and the underlying database
tables, views and Stored Procedures.

13



Important Classes in ADO.NET

DataSet Class

 The DataSet is essentially a collection of DataTable objects.

 In turn each object contains a collection of DataColumn and
DataRow objects.

 The DataSet also contains a Relations collection that can be used
to define relations among Data Table Objects.

14



Connect to a Database using ADO.NET

• To create a connection, we have to use the connection strings. 

• A connection string is required as a parameter to SQLConnection. 

• A ConnectionString is a string variable (not case sensitive).

• This contains key and value pairs:Provider, Server, Database, User Id and 
Password as in the following:

Server="name of the server or IP Address of the server"
Database="name of the database"
UserId="user name who has permission to work with database"
Password="the password of User Id"

 Example - SQL Authentication

string constr="server=.;database=db1;user id=sa;password=yourpassword";

15



How to connect, retrieve and display data from a database

1. Create a SqlConnection object using a connection string.

2. Handle exceptions.

3. Open the connection.

4. Create a SQLCommand. To represent a SQLCommand like (select * from 
studentdetails) and attach the existing connection to it. Specify the type of 
SQLCommand (Text/StoredProcedure).

5. Execute the command (use ExecuteReader).

6. Get the Result (use SqlDataReader). This is a forwardonly/readonly data object.

7. Process the result

8. Display the result

9. Close the connection

16



Create a Database in SQL Server 

 Create Database using CREATE DATABASE statement

Syntax: CREATE DATABASE database_name;

Ex: CREATE DATABASE TestDb;

• Create Database using Object Explorer

• Right Click the Database, choose New Database

• Enter name for the database as TestDb

• Then OK

17



Create a Table in SQL Server 
 Create Table using CREATE TABLE statement

Syntax: CREATE TABLE <Table_Name>
Ex: 
CREATE TABLE AddressBook (

ID int PRIMARY KEY IDENTITY (1, 1),
Name varchar(100),
Address varchar(100),
Phone varchar(50)

)

• Create Table using Object Explorer
• Right Click Table, choose New > Table
• Enter Column Name and DataType
• Set Primary Key and Auto Increment for ID Column
• Save Table with name as AddressBook

18



EX Showing Connection, Command

19



EX – Reading Data with SqlDataAdapter & DataSet

20



EX Read Data Using SqlDataReader

21



ASP.Net core 3.1 Crud Pperation with ADO.Net

• Ref Link

https://tutorialshelper.com/asp-net-core-3-1-
crud-operation-with-ado-net/

22



Entity Framework(EF) Core

• Is a new version of Entity Framework after EF 6.x.

• It is open-source, lightweight, extensible and a cross-platform version 
of Entity Framework data access technology.

• Entity Framework is an Object/Relational Mapping (O/RM) 
framework. It is an enhancement to ADO.NET that gives developers an 
automated mechanism for accessing & storing the data in the 
database.

• EF Core is intended to be used with .NET Core applications. However, 
it can also be used with standard .NET 4.5+ framework based 
applications.

23



figure showing supported application types, .NET Frameworks and OSs.

24

Windows,
Mac,
Linux

.NET 4.5+
Applications

Console
winForm

WPF,
ASP.NET

Devices +loT,
Mobile,

PC,
Xbox,

Surface Hub

MobileAppliction
Android, iOS,

Windos

EF Core EF Core

Framework

OS

EF Core EF Core EF Core

.NET Core .NET 4.56+ UWP Xamarine

Windows Windows 10 Mobile

ASP.NET Core
Applications

Web
API,

Console,
etc

Application
Type



EF Core Development Approaches

 EF Core supports two development approaches:

(1) Code-First (2) Database-First.

 EF Core mainly targets the code-first approach and provides some
support for the database-first.

 In the code-first approach, EF Core API creates the database and
tables using migration based on the conventions and configuration
provided in your domain classes. This approach is useful in Domain
Driven Design (DDD).

 In the database-first approach, EF Core API creates the domain and
context classes based on your existing database using EF Core
commands. This has limited support in EF Core as it does not support
visual designer or wizard.

25



EF Core Development Approaches

26

Tables

Context and Entity
Classes

Entity
Framework

Database-First Approach
Generate Data Access Classes for Existing Database

Domain Classes
Entity

Framework Tables

Code-First Apporach Create
Create Database from the Domain Classes

Database



EF Core vs EF 6

• Entity Framework Core is the new and improved version of 
Entity Framework for .NET Core applications. 

• EF Core continues to support the following features and 
concepts, same as EF 6.
• DbContext & DbSet

• Data Model

• Querying using Linq-to-Entities

• Change Tracking

• SaveChanges

• Migrations

27



EF Core vs EF 6

• EF Core includes the following new features which are not supported 
in EF 6.x:
1. Easy relationship configuration
2. Batch INSERT, UPDATE, and DELETE operations
3. In-memory provider for testing
4. Support for IoC (Inversion of Control)
5. Unique constraints
6. Shadow properties
7. Alternate keys
8. Global query filter
9. Field mapping
10. DbContext pooling
11. Better patterns for handling disconnected entity graphs

28



EF Core Database Providers

• EF Core uses a provider model to access many different databases. 

• EF Core includes providers as NuGet packages which you need to install.

• Below table lists database providers and NuGet packages for EF Core.

29

Database NuGet Package

SQL Server Microsoft.EntityFrameworkCore.SqlServer

MySQL MySql.Data.EntityFrameworkCore

PostgreSQL Npgsql.EntityFrameworkCore.PostgreSQL

SQLite Microsoft.EntityFrameworkCore.SQLite

SQL Compact EntityFrameworkCore.SqlServerCompact40

In-memory Microsoft.EntityFrameworkCore.InMemory

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.SqlServer
https://www.nuget.org/packages/MySql.Data.EntityFrameworkCore
https://www.nuget.org/packages/Npgsql.EntityFrameworkCore.PostgreSQL
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.SQLite
https://www.nuget.org/packages/EntityFrameworkCore.SqlServerCompact40
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.InMemory


EF Core Development Approaches

30

Code First

POCO Entities

Database First

Database

Entity Framework
Core Entity Framework

Core

Database POCO Entities



EF Core Code First Approach

• In the EF Core Code First Approach, first, we need to create our application 
domain classes such as Student, Branch, Address, etc. and a special class 
that derives from Entity Framework DbContext class. 

• Then based on the application domain classes and DBContext class, the EF 
Core creates the database and related tables.

31

Data BaseEF Core
Domain Classes
and DBContext

Class

Code First Approach
Creates Databases from the Domain Classess



EF Core Code First Approach

• In the code-first approach, the EF Core creates the database and tables using
migration based on the default conventions and configuration. This approach is
useful in Domain-Driven Design (DDD).

• Good option if you don't know the whole picture of your database as you can
just update your Plain Old Class Object (POCO) entities and let EF sync changes to
the database. In other words, you can easily add or remove features defined in
your class without worrying about syncing your database using Migrations.

• You don't have to worry about your database as EF will handle the creation for
you. In essence, database is just a storage medium with no logic.

• You will have full control over the code. You simply define and create POCO
entities and let EF generate the corresponding Database for you. The downside is
if you change something in your database manually, you will probably lose them
because your code defines the database.

• It's easy to modify and maintain as there will be no auto-generated code.
32



Object Relational Mappers

• Essential parts of an ASP.NET MVC application is the architectural design.
It’s the Model-View-Controller (MVC) pattern. It show us the view of the
application and the business logic within the application.

• Model : designed to manage the business logic.

• View : view that user can see.

• Controller : manages the interaction between Model and View.

• A one of basic end point of project is the Database. We can prepare the
database following many methods. The thing is, we have to access the DB
from the next layer (Controller). In that point, object relational
mapper(ORM) will come to the battle.

33



Object Relational Mappers

• An ORM is an application or system that support in the conversion of data
within a relational database management system (RDBMS) and the object
model that is necessary for use within object-oriented programming.

34

Convert Convert

Database (RDBMS) ORM Object Model



ADDING EF CORE TO AN APPLICATION

Install Entity Framework Core

• Entity Framework Core can be used with .NET Core or .NET 4.6 based
applications. Here, you will learn to install and use Entity Framework Core
.NET Core applications

• EF Core is not a part of .NET Core and standard .NET framework. It is
available as a NuGet package.

• You need to install NuGet packages for the following two things to use EF
Core in your application:

• 1. EF Core DB provider

• 2. EF Core tools

35



ADDING EF CORE TO AN APPLICATION

Install EF Core DB Provider

 EF Core allows us to access databases via the provider model. There are different
EF Core DB providers available for the different databases. These providers are
available as NuGet packages.

 First, install the NuGet package for the provider of database you want to access.

 For, MS SQL Server database, 
install Microsoft.EntityFrameworkCore.SqlServer NuGet package.

 To Install DB provider NuGet package:

◦ Right click on the project in the Solution Explorer in Visual Studio

◦ select Manage NuGet Packages.. (or select on the menu: Tools -> NuGet Package Manager ->

Manage NuGet Packages For Solution).

◦ search for Microsoft.EntityFrameworkCore.SqlServer and install

36



ADDING EF CORE TO AN APPLICATION

Install EF Core Tools

 Along with the DB provider package, you also need to install EF tools to
execute EF Core commands. These make it easier to perform several EF
Core-related tasks in your project at design time, such as migrations,
scaffolding, etc.

 EF Tools are available as NuGet packages.

 To Install EF Core Tools:

◦ Right click on the project in the Solution Explorer in Visual Studio

◦ select Manage NuGet Packages.. (or select on the menu: Tools -> NuGet Package

Manager -> Manage NuGet Packages For Solution).

◦ search for Microsoft.EntityFrameworkCore.Tools and install

37



Data Models

 Entity Framework needs to have a model (Entity Data Model) to
communicate with the underlying database. It builds a model based on the
shape of your domain classes, the Data Annotations and Fluent API
configurations.

 The EF model includes three parts: conceptual model, storage model, and
mapping between the conceptual and storage models.

 In the code-first approach, EF builds the conceptual model based on your
domain classes (entity classes), the context class and configurations.

 EF Core builds the storage model and mappings based on the provider you
use. EF uses this model for CRUD (Create, Read, Update, Delete) operations
to the underlying database.

38



Data Context

 The DbContext class is an integral part of Entity Framework. An instance
of DbContext represents a session with the database which can be used to query
and save instances of your entities to a database.

 DbContext is a combination of the Unit Of Work and Repository patterns.

 DbContext in EF Core allows us to perform following tasks:

◦ Manage database connection

◦ Configure model & relationship

◦ Querying database

◦ Saving data to the database

◦ Configure change tracking

◦ Caching

◦ Transaction management
39



Create Database From Model Using Entity Framework 
Core And ASP.NET Core

1. Add these two NuGet packages

to the project:

 EntityFrameworkCore.SqlServer

 Microsoft.EntityFrameworkCore.Tools

2. In Models Folder Create a Class

with Name as WebUser and add

these lines of Codes

40



Create Database From Model Using Entity Framework 
Core And ASP.NET Core

3. In Models Folder Create a custom DbContext class named AppDbContext
and write the following code.

41



Create Database From Model Using Entity Framework 
Core And ASP.NET Core

3. Build your project

4. Open the appsettings.json file and Add Database Connection string:

"ConnectionStrings": {

"DBConnectionString": "Data Source=.; Initial Catalog=DotNetCoreDBS; User Id=sa; 
Password =123456"

}

42



Create Database From Model Using Entity Framework 
Core And ASP.NET Core

5. open the Startup class and add this code to the ConfigureServices()
method.
public void ConfigureServices(IServiceCollection services)

{

services.AddControllersWithViews();

services.AddDbContext<AppDbContext>(o => 
o.UseSqlServer(Configuration.GetConnectionString("DBConnectionString")));

}

The above code uses AddDbContext() method to register AppDbContext. Notice that the 
database connection string stored in the appsettings.json file is supplied to the 
UseSqlServer() method.

43



Create Database From Model Using Entity Framework 
Core And ASP.NET Core

6. Create Database using EnsureCreated() method
- EF Core model is ready, let's try to create the required database using EnsureCreated()

method. This technique is a code based technique and works great for quick and simple
database creation scenarios. If database is already exists, then no action is taken,
otherwise database is created.

- Add following marked as bold in Configure Method
public void Configure(IApplicationBuilder app, IWebHostEnvironment env, AppDbContext db)

{

.

db.Database.EnsureCreated();

app.UseStaticFiles();

app.UseRouting();

app.UseAuthorization();

}

44



CRUD Operation Using Entity Framework Core

Create MVC Controller with views, using Entity Framework

- Right-click on the controller folder, select add new item, and then
select controller. Then this dialog will be displayed.

45



CRUD Operation Using Entity Framework Core

Create MVC Controller with views, using Entity Framework
- Enter for Model Class, Data context class, Controller name as shown

- Tick Views as shown

46



CRUD Operation Using Entity Framework Core

 Review your generated code in controller and view pages

 Load your controller in your browser

◦ https://localhost:44347/WebUsers

◦ https://localhost:44347/WebUsers/Create

 Click on Edit, Details and Delete

47


