
Unit 6. Architectural Design

1

System Modeling {Review}

An external perspective, where you model the context or environment of the
system. (Context Model: Simple Block Diagram)

An interaction perspective, where you model the interactions between a system
and its environment, or between the components of a system. (Interaction
Model: Use-case Diagram , Sequence Diagram)

A structural perspective, where you model the organization of a system or the
structure of the data that is processed by the system. (Structural Model: Class
Diagram)

A behavioral perspective, where you model the dynamic behavior of the system
and how it responds to events. (Behavioral Model: State Transition Diagram)

Data perspective, where you model the flow of data and relationship between
different entities. (Data Model: Data Flow Diagram, Data Dictionary, Entity
Relationship Diagram) 2

3

Software architecture

 The design process for identifying the sub-systems making up a system and
the framework for sub-system control and communication

 The output of this design process is a description of the software architecture.

4

Architectural design

 An early stage of the system design process.

 Represents the link between specification and design processes.

 Often carried out in parallel with some specification activities.

 It involves identifying major system components and their communications.

5

The architecture of a packing robot control system

6

Advantages of explicit architecture

Stakeholder communication
 Architecture may be used as a focus of discussion by system

stakeholders.

System analysis
 Means that analysis of whether the system can meet its non-functional

requirements is possible.

Large-scale reuse
 The architecture may be reusable across a range of systems
 Product-line architectures may be developed.

7

Architectural representations

Simple, informal block diagrams showing components and their
relationships are the most frequently used method for
documenting software architectures.

But these have been criticized because they lack semantics, do
not show the types of relationships between entities nor the visible
properties of entities in the architecture.

Depends on the use of architectural models.

8

Architectural design decisions

Architectural design is a creative process so the process differs
depending on the type of system being developed.

However, a number of common decisions span all design
processes and these decisions affect the non-functional
characteristics of the system.

9

Architectural design decisions

 Is there a generic application architecture that can be used?

 How will the system be distributed?

 What architectural styles are appropriate?

 What approach will be used to structure the system?

 How will the system be decomposed into modules?

 What control strategy should be used?

 How will the architectural design be evaluated?

 How should the architecture be documented?

10

Architecture reuse

Systems in the same domain often have similar architectures that
reflect domain concepts.

Application product lines are built around a core architecture with
variants that satisfy particular customer requirements.

The architecture of a system may be designed around one of
more architectural patterns or ‘styles’.
 These capture the essence of an architecture and can be instantiated in

different ways.

11

Architecture and system characteristics

 Performance

 Localize critical operations and minimize communications.

 Security

 Use a layered architecture with critical assets in the inner layers.

 Safety

 Localize safety-critical features in a small number of sub-systems.

 Availability

 Include redundant components and mechanisms for fault tolerance.

 Maintainability

 Use fine-grain, replaceable components.

12

Architectural views

 What views or perspectives are useful when designing and documenting a
system’s architecture?

 What notations should be used for describing architectural models?

 Each architectural model only shows one view or perspective of the system.
 It might show how a system is decomposed into modules, how the run-time processes

interact or the different ways in which system components are distributed across a
network.

 For both design and documentation, you usually need to present multiple views of the
software architecture.

13

4 + 1 view model of software architecture

 A logical view, which shows the key abstractions in the system as objects or
object classes.

 A process view, which shows how, at run-time, the system is composed of
interacting processes.

 A development view, which shows how the software is decomposed for
development.

 A physical view, which shows the system hardware and how software
components are distributed across the processors in the system.

 Related using use cases or scenarios (+1)

14

Architectural patterns

 Patterns are a means of representing, sharing and reusing knowledge.

 An architectural pattern is a conventional description of good design practice,
which has been tried and tested in different environments.

 Patterns should include information about when they are and when the are
not useful.

 Patterns may be represented using tabular and graphical descriptions.

15

Architectural patterns

 Box and Line Diagram

 MVC

 Layered Architecture

 Repository Architecture

 Client Server Architecture

 P2P architecture

16

Box and line diagrams

 Very abstract - they do not show the nature of component relationships nor
the externally visible properties of the sub-systems.

 However, useful for communication with stakeholders and for project
planning.

17

Box and line diagrams

18

Model-View-Controller (MVC) pattern

19

Model

 Corresponds to all the data-related logic that the user works with

 This can represent either the data that is being transferred between the
View and Controller components or any other business logic-related data.

 For example, a Customer object will retrieve the customer information
from the database, manipulate it and update it data back to the database
or use it to render data.

Model-View-Controller (MVC) pattern

20

 View

 The View component is used for all the UI logic of the application.

 For example, the Customer view will include all the UI components such as text
boxes, dropdowns, etc. that the final user interacts with.

 Controller

 Controllers act as an interface between Model and View components to process
all the business logic and incoming requests, manipulate data using the Model
component and interact with the Views to render the final output.

 For example, the Customer controller will handle all the interactions and inputs
from the Customer View and update the database using the Customer Model

The Model-View-Controller (MVC) pattern

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The system is
structured into three logical components that interact with each other. The Model
component manages the system data and associated operations on that data. The
View component defines and manages how the data is presented to the user. The
Controller component manages user interaction (e.g., key presses, mouse clicks, etc.)
and passes these interactions to the View and the Model. See Figure 6.3.

Example Figure shows the architecture of a web-based application system organized using the
MVC pattern.

When used Used when there are multiple ways to view and interact with data. Also used when the
future requirements for interaction and presentation of data are unknown.

Advantages Allows the data to change independently of its representation and vice versa.
Supports presentation of the same data in different ways with changes made in one
representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model and
interactions are simple.

21

The organization of the Model-View-Controller

22

Layered architecture

 Used to model the interfacing of sub-systems.

 Organises the system into a set of layers (or abstract machines) each of
which provide a set of services.

 Supports the incremental development of sub-systems in different layers.
When a layer interface changes, only the adjacent layer is affected.

 However, often artificial to structure systems in this way.

23

The Layered architecture pattern

Name Layered architecture

Description Organizes the system into layers with related functionality associated with each
layer. A layer provides services to the layer above it so the lowest-level layers
represent core services that are likely to be used throughout the system. See
Figure 6.6.

Example A layered model of a system for sharing copyright documents held in different
libraries

When used Used when building new facilities on top of existing systems; when the
development is spread across several teams with each team responsibility for a
layer of functionality; when there is a requirement for multi-level security.

Advantages Allows replacement of entire layers so long as the interface is maintained.
Redundant facilities (e.g., authentication) can be provided in each layer to
increase the dependability of the system.

Disadvantages In practice, providing a clean separation between layers is often difficult and a
high-level layer may have to interact directly with lower-level layers rather than
through the layer immediately below it. Performance can be a problem because
of multiple levels of interpretation of a service request as it is processed at each
layer.

24

A generic layered architecture

25

Repository architecture

 Sub-systems must exchange data. This may be done in two ways:
 Shared data is held in a central database or repository and may be accessed by all sub-

systems;
 Each sub-system maintains its own database and passes data explicitly to other sub-

systems.

 When large amounts of data are to be shared, the repository model of
sharing is most commonly used a this is an efficient data sharing mechanism.

26

The Repository pattern

Name Repository

Description All data in a system is managed in a central repository that is accessible to all system
components. Components do not interact directly, only through the repository.

Example Figure in the next slide is an example of a repository of system design information.

When used You should use this pattern when you have a system in which large volumes of
information are generated that has to be stored for a long time. You may also use it in
data-driven systems where the inclusion of data in the repository triggers an action or
tool.

Advantages Components can be independent—they do not need to know of the existence of other
components. Changes made by one component can be propagated to all components.
All data can be managed consistently (e.g., backups done at the same time) as it is all in
one place.

Disadvantages The repository is a single point of failure so problems in the repository affect the whole
system. May be inefficiencies in organizing all communication through the repository.
Distributing the repository across several computers may be difficult.

27

A repository architecture

28

Client-server architecture

 Distributed system model which shows how data and processing is
distributed across a range of components.
 Can be implemented on a single computer.

 Set of stand-alone servers which provide specific services such as printing,
data management, etc.

 Set of clients which call on these services.

 Network which allows clients to access servers.

29

The Client–server pattern

Name Client-server

Description In a client–server architecture, the functionality of the system is organized into services,
with each service delivered from a separate server. Clients are users of these services
and access servers to make use of them.

Example Example of a film and video/DVD library organized as a client–server system in the next
slide

When used Used when data in a shared database has to be accessed from a range of locations.
Because servers can be replicated, may also be used when the load on a system is
variable.

Advantages The principal advantage of this model is that servers can be distributed across a network.
General functionality (e.g., a printing service) can be available to all clients and does not
need to be implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial of service attacks or
server failure. Performance may be unpredictable because it depends on the network as
well as the system. May be management problems if servers are owned by different
organizations.

30

A client–server architecture for a film library

31

Peer-to-Peer (P2P) Architecture

 Peer-to-peer architecture (P2P architecture) is a commonly used computer
networking architecture in which each workstation, or node, has the same
capabilities and responsibilities

 It is often compared to the classic client/server architecture, in which some
computers are dedicated to serving others.

32

Peer-to-Peer (P2P) Architecture

33

Multiprocessor Architecture

 Multiprocessor
 A computer system in which two or more CPUs share full access to a common RAM

 In a multiprocessing system, all CPUs may be equal, or some may be
reserved for special purposes.

 A combination of hardware and operating-system software design
considerations determine the symmetry.

 Systems that treat all CPUs equally are called symmetric multiprocessing
(SMP) systems.

 If all CPUs are not equal, system resources may be divided in a number of
ways, including asymmetric multiprocessing (ASMP), non-uniform memory
access (NUMA) multiprocessing, and clustered multiprocessing.

34

Multiprocessor Architecture

Tightly coupled multiprocessor
 A multiprocessor system with central shared memory is classified as

shared-memory or tightly coupled multiprocessor.
 Each processor have their cache memory along with a common global

memory

Loosely coupled multiprocessor
 A multiprocessor system with distributed memory is classified as loosely

coupled multiprocessor.
 Each processor have their private local memory

35

Multiprocessor Architecture

36

Architecture Domain

 An architecture domain is a broad view of an enterprise or system.

 It is a partial representation of a whole system that addresses several
concerns of several stakeholders.

 It is a description that hides other views or facets of the system described

 Can be viewed as superset of
 Business architecture
 Data Architecture
 Technology Architecture
 Applications Architecture

37

Architecture Domain

38

Architecture Domain

 Business Architecture
 The structure and behavior of a business system (not necessarily related to computers).
 Covers business goals, business functions or capabilities, business processes and roles etc.

 Data Architecture
 The data structures used by a business and/or its applications.
 Descriptions of data stores, data groups and data items.
 Mappings of those data artifacts to data qualities, applications, locations etc.

 Technology Architecture
 The structure and behavior of the IT infrastructure.
 Covers the client and server nodes of the hardware configuration, the infrastructure

applications that run on them, the infrastructure services they offer to applications, the
protocols and networks that connect applications and nodes.

39

Architecture Domain

 Application Architecture

 The structure and behavior of applications used in a business, focused on
how they interact with each other and with users.

 In general, application architecture defines how applications interact with
middleware, databases and other applications.

 Application architectures usually follow software design principles
 Larger software publishers, including Microsoft, typically issue application

architecture guidelines to help third-party developers create applications for
their platform.

 In its case, Microsoft offers an Azure Application Architecture Guide to help
developers producing cloud applications for Microsoft Azure public cloud
computing platform.

40

Architecture Domain

Application Architecture:

 Similarly, the Object Management Group (OMG), a standards consortium
of vendors, end-users, academic institutions and government agencies,
operates multiple task forces to develop enterprise integration standards.

 OMG’s modeling standards include the Unified Modeling Language (UML)
and the Model Driven Architecture.

 Overall, application architecture helps IT and business planners work
together so that the right technical solutions are available to meet the
business objectives. More specifically, application architecture:

41

Architecture Domain

Application Architecture:

 Reduces cost by identifying redundancies, such as the use of two separate
databases that can be replaced by one;

 Improves efficiency by identifying gaps, such as where one application cannot
work with another or where mobile users cannot access essential services
need;

 Makes an enterprise platform for accessible and attractive to third-party
developers;

 Produces interoperable, modular systems that are easier to use and maintain;

 Helps architect see the big picture and map that against the organization's
objectives.

42

43

	Slide 1
	System Modeling {Review}
	Slide 3
	Software architecture
	Architectural design
	The architecture of a packing robot control system
	Advantages of explicit architecture
	Architectural representations
	Architectural design decisions
	Architectural design decisions
	Architecture reuse
	Architecture and system characteristics
	Architectural views
	4 + 1 view model of software architecture
	Architectural patterns
	Architectural patterns
	Box and line diagrams
	Box and line diagrams
	Model-View-Controller (MVC) pattern
	Model-View-Controller (MVC) pattern
	The Model-View-Controller (MVC) pattern
	The organization of the Model-View-Controller
	Layered architecture
	The Layered architecture pattern
	A generic layered architecture
	Repository architecture
	The Repository pattern
	A repository architecture
	Client-server architecture
	The Client–server pattern
	A client–server architecture for a film library
	Peer-to-Peer (P2P) Architecture
	Peer-to-Peer (P2P) Architecture
	Multiprocessor Architecture
	Multiprocessor Architecture
	Multiprocessor Architecture
	Architecture Domain
	Architecture Domain
	Architecture Domain
	Architecture Domain
	Architecture Domain
	Architecture Domain
	Slide 43

