
Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 1

Chapter – 6

Pipeline and Vector Processing

6.1 Pipelining
 Pipelining is a technique of decomposing a sequential process into

suboperations, with each subprocess being executed in a special dedicated
segment that operates concurrently with all other segments.

 The overlapping of computation is made possible by associating a register
with each segment in the pipeline.

 The registers provide isolation between each segment so that each can operate
on distinct data simultaneously.

 Perhaps the simplest way of viewing the pipeline structure is to imagine that
each segment consists of an input register followed by a combinational
circuit.

o The register holds the data.
o The combinational circuit performs the suboperation in the particular

segment.
 A clock is applied to all registers after enough time has elapsed to perform all

segment activity.
 The pipeline organization will be demonstrated by means of a simple

example.
o To perform the combined multiply and add operations with a stream of

numbers
Ai * Bi + Ci for i = 1, 2, 3, …, 7

 Each suboperation is to be implemented in a segment within a pipeline.
R1  Ai, R2  Bi Input Ai and Bi
R3  R1 * R2, R4  Ci Multiply and input Ci
R5  R3 + R4 Add Ci to product

 Each segment has one or two registers and a combinational circuit as shown in
Fig. 9-2.

 The five registers are loaded with new data every clock pulse. The effect of
each clock is shown in Table 4-1.

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 2

 Fig 4-1: Example of pipeline processing

Table 4-1: Content of Registers in Pipeline Example

General Considerations

 Any operation that can be decomposed into a sequence of suboperations of
about the same complexity can be implemented by a pipeline processor.

 The general structure of a four-segment pipeline is illustrated in Fig. 4-2.
 We define a task as the total operation performed going through all the

segments in the pipeline.
 The behavior of a pipeline can be illustrated with a space-time diagram.

o It shows the segment utilization as a function of time.

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 3

 Fig 4-2: Four Segment Pipeline

 The space-time diagram of a four-segment pipeline is demonstrated in Fig. 4-3.
 Where a k-segment pipeline with a clock cycle time tp is used to execute n tasks.

o The first task T1 requires a time equal to ktp to complete its operation.
o The remaining n-1 tasks will be completed after a time equal to (n-1)tp
o Therefore, to complete n tasks using a k-segment pipeline requires k+(n-1)

clock cycles.
 Consider a nonpipeline unit that performs the same operation and takes a time

equal to tn to complete each task.
o The total time required for n tasks is ntn.

 Fig 4-3: Space-time diagram for pipeline

 The speedup of a pipeline processing over an equivalent non-pipeline processing
is defined by the ratio S = ntn/(k+n-1)tp .

 If n becomes much larger than k-1, the speedup becomes S = tn/tp.
 If we assume that the time it takes to process a task is the same in the pipeline and

non-pipeline circuits, i.e., tn = ktp, the speedup reduces to S=ktp/tp=k.
 This shows that the theoretical maximum speed up that a pipeline can provide is

k, where k is the number of segments in the pipeline.
 To duplicate the theoretical speed advantage of a pipeline process by means of

multiple functional units, it is necessary to construct k identical units that will be
operating in parallel.

 This is illustrated in Fig. 4-4, where four identical circuits are connected in
parallel.

 Instead of operating with the input data in sequence as in a pipeline, the parallel
circuits accept four input data items simultaneously and perform four tasks at the
same time.

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 4

 Fig 4-4: Multiple functional units in parallel

 There are various reasons why the pipeline cannot operate at its maximum
theoretical rate.

o Different segments may take different times to complete their sub
operation.

o It is not always correct to assume that a non pipe circuit has the same time
delay as that of an equivalent pipeline circuit.

 There are two areas of computer design where the pipeline organization is
applicable.

o Arithmetic pipeline
o Instruction pipeline

6.2 Parallel Processing

 Parallel processing is a term used to denote a large class of techniques that
are used to provide simultaneous data-processing tasks for the purpose of
increasing the computational speed of a computer system.

 The purpose of parallel processing is to speed up the computer processing
capability and increase its throughput, that is, the amount of processing that
can be accomplished during a given interval of time.

 The amount of hardware increases with parallel processing, and with it, the
cost of the system increases.

 Parallel processing can be viewed from various levels of complexity.
o At the lowest level, we distinguish between parallel and serial

operations by the type of registers used. e.g. shift registers and
registers with parallel load

o At a higher level, it can be achieved by having a multiplicity of
functional units that perform identical or different operations
simultaneously.

 Fig. 4-5 shows one possible way of separating the execution unit into eight
functional units operating in parallel.

o A multifunctional organization is usually associated with a complex
control unit to coordinate all the activities among the various
components.

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 5

 Fig 4-5: Processor with multiple functional units

 There are a variety of ways that parallel processing can be classified.
o Internal organization of the processors
o Interconnection structure between processors
o The flow of information through the system

 M. J. Flynn considers the organization of a computer system by the number of
instructions and data items that are manipulated simultaneously.

o Single instruction stream, single data stream (SISD)
o Single instruction stream, multiple data stream (SIMD)
o Multiple instruction stream, single data stream (MISD)
o Multiple instruction stream, multiple data stream (MIMD)

SISD
 Represents the organization of a single computer containing a control unit, a

processor unit, and a memory unit.
 Instructions are executed sequentially and the system may or may not have

internal parallel processing capabilities.
 parallel processing may be achieved by means of multiple functional units or by

pipeline processing.

SIMD

 Represents an organization that includes many processing units under the
supervision of a common control unit.

 All processors receive the same instruction from the control unit but operate on
different items of data.

 The shared memory unit must contain multiple modules so that it can
communicate with all the processors simultaneously.

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 6

MISD & MIMD
 MISD structure is only of theoretical interest since no practical system has been

constructed using this organization.
 MIMD organization refers to a computer system capable of processing several

programs at the same time. e.g. multiprocessor and multicomputer system
 Flynn’s classification depends on the distinction between the performance of the

control unit and the data-processing unit.
 It emphasizes the behavioral characteristics of the computer system rather than its

operational and structural interconnections.
 One type of parallel processing that does not fit Flynn’s classification is

pipelining.
 We consider parallel processing under the following main topics:

o Pipeline processsing
 Is an implementation technique where arithmetic suboperations or

the phases of a computer instruction cycle overlap in execution.
o Vector processing

 Deals with computations involving large vectors and matrices.
o Array processing

 Perform computations on large arrays of data.

6.3 Arithmetic Pipeline
 Pipeline arithmetic units are usually found in very high speed computers

o Floating–point operations, multiplication of fixed-point numbers, and
similar computations in scientific problem

 Floating–point operations are easily decomposed into sub operations.
 An example of a pipeline unit for floating-point addition and subtraction is

showed in the following:
o The inputs to the floating-point adder pipeline are two normalized

floating-point binary number

b

a

BY

AX

2

2





o A and B are two fractions that represent the mantissas
o a and b are the exponents

 The floating-point addition and subtraction can be performed in four
segments, as shown in Fig. 4-6.

 The suboperations that are performed in the four segments are:
o Compare the exponents

 The larger exponent is chosen as the exponent of the result.
o Align the mantissas

 The exponent difference determines how many times the
mantissa associated with the smaller exponent must be shifted
to the right.

o Add or subtract the mantissas
o Normalize the result

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 7

 When an overflow occurs, the mantissa of the sum or
difference is shifted right and the exponent incremented by
one.

 If an underflow occurs, the number of leading zeros in the
mantissa determines the number of left shifts in the mantissa
and the number that must be subtracted from the exponent.

 The following numerical example may clarify the suboperations performed in
each segment.

 The comparator, shift, adder, subtractor, incrementer, and decrementer in the
floating-point pipeline are implemented with combinational circuits.

 Suppose that the time delays of the four segments are t 1=60ns, t2=70ns,
t3=100ns, t4=80ns, and the interface registers have a delay of tr=10ns

o Pipeline floating-point arithmetic delay: tp=t3+tr=110ns
o Nonpipeline floating-point arithmetic delay: tn=t1+t2+t3+t4+tr=320ns
o Speedup: 320/110=2.9

 Fig 4-6: Pipeline for floating point addition and subtraction

6.4 Instruction Pipeline
 Pipeline processing can occur not only in the data stream but in the

instruction as well.
 Consider a computer with an instruction fetch unit and an instruction

execution unit designed to provide a two-segment pipeline.
 Computers with complex instructions require other phases in addition to

above phases to process an instruction completely.
 In the most general case, the computer needs to process each instruction with

the following sequence of steps.
o Fetch the instruction from memory.
o Decode the instruction.

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 8

o Calculate the effective address.
o Fetch the operands from memory.
o Execute the instruction.
o Store the result in the proper place.

 There are certain difficulties that will prevent the instruction pipeline from
operating at its maximum rate.

o Different segments may take different times to operate on the
incoming information.

o Some segments are skipped for certain operations.
o Two or more segments may require memory access at the same time,

causing one segment to wait until another is finished with the memory.

Example: Four-Segment Instruction Pipeline

 Assume that:
o The decoding of the instruction can be combined with the calculation

of the effective address into one segment.
o The instruction execution and storing of the result can be combined

into one segment.
 Fig 4-7 shows how the instruction cycle in the CPU can be processed with a

four-segment pipeline.
o Thus up to four suboperations in the instruction cycle can overlap and

up to four different instructions can be in progress of being processed
at the same time.

 An instruction in the sequence may be causes a branch out of normal
sequence.

o In that case the pending operations in the last two segments are
completed and all information stored in the instruction buffer is
deleted.

o Similarly, an interrupt request will cause the pipeline to empty and
start again from a new address value.

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 9

 Fig 4-7: Four-segment CPU pipeline

 Fig. 9-8 shows the operation of the instruction pipeline.

 Fig 4-8: Timing of Instruction Pipeline

o FI: the segment that fetches an instruction
o DA: the segment that decodes the instruction and calculate the

effective address
o FO: the segment that fetches the operand
o EX: the segment that executes the instruction

Pipeline Conflicts

 In general, there are three major difficulties that cause the instruction pipeline
to deviate from its normal operation.

o Resource conflicts caused by access to memory by two segments at the
same time.

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 10

 Can be resolved by using separate instruction and data
memories

o Data dependency conflicts arise when an instruction depends on the
result of a previous instruction, but this result is not yet available.

o Branch difficulties arise from branch and other instructions that change
the value of PC.

 A difficulty that may cause a degradation of performance in an instruction
pipeline is due to possible collision of data or address.

o A data dependency occurs when an instruction needs data that are not
yet available.

o An address dependency may occur when an operand address cannot be
calculated because the information needed by the addressing mode is
not available.

 Pipelined computers deal with such conflicts between data dependencies in a
variety of ways.

Data Dependency Solutions

 Hardware interlocks: an interlock is a circuit that detects instructions whose
source operands are destinations of instructions farther up in the pipeline.

o This approach maintains the program sequence by using hardware to insert
the required delays.

 Operand forwarding: uses special hardware to detect a conflict and then avoid it
by routing the data through special paths between pipeline segments.

o This method requires additional hardware paths through multiplexers as
well as the circuit that detects the conflict.

 Delayed load: the compiler for such computers is designed to detect a data
conflict and reorder the instructions as necessary to delay the loading of the
conflicting data by inserting no-operation instructions.

Handling of Branch Instructions

 One of the major problems in operating an instruction pipeline is the occurrence
of branch instructions.

o An unconditional branch always alters the sequential program flow by
loading the program counter with the target address.

o In a conditional branch, the control selects the target instruction if the
condition is satisfied or the next sequential instruction if the condition is
not satisfied.

 Pipelined computers employ various hardware techniques to minimize the
performance degradation caused by instruction branching.

 Prefetch target instruction: To prefetch the target instruction in addition to the
instruction following the branch. Both are saved until the branch is executed.

 Branch target buffer(BTB): The BTB is an associative memory included in the
fetch segment of the pipeline.

o Each entry in the BTB consists of the address of a previously executed
branch instruction and the target instruction for that branch.

o It also stores the next few instructions after the branch target instruction.

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 11

 Loop buffer: This is a small very high speed register file maintained by the
instruction fetch segment of the pipeline.

 Branch prediction: A pipeline with branch prediction uses some additional logic
to guess the outcome of a conditional branch instruction before it is executed.

 Delayed branch: in this procedure, the compiler detects the branch instructions
and rearranges the machine language code sequence by inserting useful
instructions that keep the pipeline operating without interruptions.

o A procedure employed in most RISC processors.
o e.g. no-operation instruction

6.5 RISC Pipeline

 To use an efficient instruction pipeline
o To implement an instruction pipeline using a small number of

suboperations, with each being executed in one clock cycle.
o Because of the fixed-length instruction format, the decoding of the

operation can occur at the same time as the register selection.
o Therefore, the instruction pipeline can be implemented with two or

three segments.
 One segment fetches the instruction from program memory
 The other segment executes the instruction in the ALU
 Third segment may be used to store the result of the ALU

operation in a destination register
 The data transfer instructions in RISC are limited to load and store

instructions.
o These instructions use register indirect addressing. They usually need

three or four stages in the pipeline.
o To prevent conflicts between a memory access to fetch an instruction

and to load or store an operand, most RISC machines use two separate
buses with two memories.

o Cache memory: operate at the same speed as the CPU clock
 One of the major advantages of RISC is its ability to execute instructions at

the rate of one per clock cycle.
o In effect, it is to start each instruction with each clock cycle and to

pipeline the processor to achieve the goal of single-cycle instruction
execution.

o RISC can achieve pipeline segments, requiring just one clock cycle.
 Compiler supported that translates the high-level language program into

machine language program.
o Instead of designing hardware to handle the difficulties associated with

data conflicts and branch penalties.
o RISC processors rely on the efficiency of the compiler to detect and

minimize the delays encountered with these problems.

Example: Three-Segment Instruction Pipeline
 Thee are three types of instructions:

o The data manipulation instructions: operate on data in processor registers

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 12

o The data transfer instructions:
o The program control instructions:

 The control section fetches the instruction from program memory into an
instruction register.

o The instruction is decoded at the same time that the registers needed for
the execution of the instruction are selected.

 The processor unit consists of a number of registers and an arithmetic logic unit
(ALU).

 A data memory is used to load or store the data from a selected register in the
register file.

 The instruction cycle can be divided into three suboperations and implemented in
three segments:

o I: Instruction fetch
 Fetches the instruction from program memory

o A: ALU operation
 The instruction is decoded and an ALU operation is performed.
 It performs an operation for a data manipulation instruction.
 It evaluates the effective address for a load or store instruction.
 It calculates the branch address for a program control instruction.

o E: Execute instruction
 Directs the output of the ALU to one of three destinations,

depending on the decoded instruction.
 It transfers the result of the ALU operation into a destination

register in the register file.
 It transfers the effective address to a data memory for loading or

storing.
 It transfers the branch address to the program counter.

Delayed Load
 Consider the operation of the following four instructions:

o LOAD: R1  M[address 1]
o LOAD: R2  M[address 2]
o ADD: R3  R1 +R2
o STORE: M[address 3]  R3

 There will be a data conflict in instruction 3 because the operand in R2 is not yet
available in the A segment.

 This can be seen from the timing of the pipeline shown in Fig. 4-9(a).
o The E segment in clock cycle 4 is in a process of placing the memory data

into R2.
o The A segment in clock cycle 4 is using the data from R2.

 It is up to the compiler to make sure that the instruction following the load
instruction uses the data fetched from memory.

 This concept of delaying the use of the data loaded from memory is referred to as
delayed load.

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 13

 Fig 4-9(a): Three segment pipeline timing - Pipeline timing with data conflict

 Fig. 4-9(b) shows the same program with a no-op instruction inserted after the

load to R2 instruction.

Fig 4-9(b): Three segment pipeline timing - Pipeline timing with delayed load

 Thus the no-op instruction is used to advance one clock cycle in order to
compensate for the data conflict in the pipeline.

 The advantage of the delayed load approach is that the data dependency is taken
care of by the compiler rather than the hardware.

Delayed Branch

 The method used in most RISC processors is to rely on the compiler to redefine
the branches so that they take effect at the proper time in the pipeline. This
method is referred to as delayed branch.

 The compiler is designed to analyze the instructions before and after the branch
and rearrange the program sequence by inserting useful instructions in the delay
steps.

 It is up to the compiler to find useful instructions to put after the branch
instruction. Failing that, the compiler can insert no-op instructions.

An Example of Delayed Branch
 The program for this example consists of five instructions.

o Load from memory to R1
o Increment R2
o Add R3 to R4
o Subtract R5 from R6
o Branch to address X

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 14

 In Fig. 4-10(a) the compiler inserts two no-op instructions after the branch.
o The branch address X is transferred to PC in clock cycle 7.

Fig 4-10(a): Using no operation instruction

 The program in Fig. 4-10(b) is rearranged by placing the add and subtract
instructions after the branch instruction.

o PC is updated to the value of X in clock cycle 5.

 Fig 4-10(b): Rearranging the instructions

6.6 Vector Processing
 In many science and engineering applications, the problems can be formulated in

terms of vectors and matrices that lend themselves to vector processing.
 Computers with vector processing capabilities are in demand in specialized

applications. e.g.
o Long-range weather forecasting
o Petroleum explorations
o Seismic data analysis
o Medical diagnosis
o Artificial intelligence and expert systems
o Image processing
o Mapping the human genome

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 15

 To achieve the required level of high performance it is necessary to utilize the
fastest and most reliable hardware and apply innovative procedures from vector
and parallel processing techniques.

Vector Operations

 Many scientific problems require arithmetic operations on large arrays of
numbers.

 A vector is an ordered set of a one-dimensional array of data items.
 A vector V of length n is represented as a row vector by V=[v1,v2,…,Vn].
 To examine the difference between a conventional scalar processor and a vector

processor, consider the following Fortran DO loop:
DO 20 I = 1, 100

 20 C(I) = B(I) + A(I)
 This is implemented in machine language by the following sequence of

operations.
Initialize I=0

20 Read A(I)
Read B(I)

 Store C(I) = A(I)+B(I)
 Increment I = I + 1
 If I <= 100 go to 20
 Continue

 A computer capable of vector processing eliminates the overhead associated with
the time it takes to fetch and execute the instructions in the program loop.

 C(1:100) = A(1:100) + B(1:100)
 A possible instruction format for a vector instruction is shown in Fig. 4-11.

o This assumes that the vector operands reside in memory.
 It is also possible to design the processor with a large number of registers and

store all operands in registers prior to the addition operation.
o The base address and length in the vector instruction specify a group of

CPU registers.

 Fig 4-11: Instruction format for vector processor

 Matrix Multiplication

 The multiplication of two n x n matrices consists of n2 inner products or n3
multiply-add operations.

o Consider, for example, the multiplication of two 3 x 3 matrices A and B.
o c11= a11b11+ a12b21+ a13b31
o This requires three multiplication and (after initializing c11 to 0) three

additions.
 In general, the inner product consists of the sum of k product terms of the form

C= A1B1+A2B2+A3B3+…+AkBk.
o In a typical application k may be equal to 100 or even 1000.

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 16

 The inner product calculation on a pipeline vector processor is shown in Fig. 4-
12.







161612128844

151511117733

141410106622

1313995511

BABABABA

BABABABA

BABABABA

BABABABAC

Fig 4-12: Pipeline for calculating an inner product

 Memory Interleaving

 Pipeline and vector processors often require simultaneous access to memory from
two or more sources.

o An instruction pipeline may require the fetching of an instruction and an
operand at the same time from two different segments.

o An arithmetic pipeline usually requires two or more operands to enter the
pipeline at the same time.

 Instead of using two memory buses for simultaneous access, the memory can be
partitioned into a number of modules connected to a common memory address
and data buses.

o A memory module is a memory array together with its own address and
data registers.

 Fig. 4-13 shows a memory unit with four modules.

 Fig 4-13: Multiple module memory organization

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 17

 The advantage of a modular memory is that it allows the use of a technique called
interleaving.

 In an interleaved memory, different sets of addresses are assigned to different
memory modules.

 By staggering the memory access, the effective memory cycle time can be
reduced by a factor close to the number of modules.

Supercomputers

 A commercial computer with vector instructions and pipelined floating-point
arithmetic operations is referred to as a supercomputer.

o To speed up the operation, the components are packed tightly together to
minimize the distance that the electronic signals have to travel.

 This is augmented by instructions that process vectors and combinations of
scalars and vectors.

 A supercomputer is a computer system best known for its high computational
speed, fast and large memory systems, and the extensive use of parallel
processing.

o It is equipped with multiple functional units and each unit has its own
pipeline configuration.

 It is specifically optimized for the type of numerical calculations involving
vectors and matrices of floating-point numbers.

 They are limited in their use to a number of scientific applications, such as
numerical weather forecasting, seismic wave analysis, and space research.

 A measure used to evaluate computers in their ability to perform a given number
of floating-point operations per second is referred to as flops.

 A typical supercomputer has a basic cycle time of 4 to 20 ns.
 The examples of supercomputer:
 Cray-1: it uses vector processing with 12 distinct functional units in parallel; a

large number of registers (over 150); multiprocessor configuration (Cray X-MP
and Cray Y-MP)

o Fujitsu VP-200: 83 vector instructions and 195 scalar instructions; 300
megaflops

6.7 Array Processing

 An array processor is a processor that performs computations on large arrays of
data.

 The term is used to refer to two different types of processors.
o Attached array processor:

 Is an auxiliary processor.
 It is intended to improve the performance of the host computer in

specific numerical computation tasks.
o SIMD array processor:

 Has a single-instruction multiple-data organization.
 It manipulates vector instructions by means of multiple functional

units responding to a common instruction.

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 18

Attached Array Processor
 Its purpose is to enhance the performance of the computer by providing vector

processing for complex scientific applications.
o Parallel processing with multiple functional units

 Fig. 4-14 shows the interconnection of an attached array processor to a host
computer.

 For example, when attached to a VAX 11 computer, the FSP-164/MAX from
Floating-Point Systems increases the computing power of the VAX to
100megaflops.

 The objective of the attached array processor is to provide vector manipulation
capabilities to a conventional computer at a fraction of the cost of supercomputer.

 Fig 9-14: Attached array processor with host computer

 SIMD Array Processor
 An SIMD array processor is a computer with multiple processing units operating

in parallel.
 A general block diagram of an array processor is shown in Fig. 9-15.

o It contains a set of identical processing elements (PEs), each having a
local memory M.

o Each PE includes an ALU, a floating-point arithmetic unit, and working
registers.

o Vector instructions are broadcast to all PEs simultaneously.
 Masking schemes are used to control the status of each PE during the execution of

vector instructions.
o Each PE has a flag that is set when the PE is active and reset when the PE

is inactive.
 For example, the ILLIAC IV computer developed at the University of Illinois and

manufactured by the Burroughs Corp.
o Are highly specialized computers.
o They are suited primarily for numerical problems that can be expressed in

vector or matrix form.

For more notes visit https://collegenote.pythonanywhere.com

Computer Organization and Architecture Chapter 4 : Pipeline and Vector processing

Compiled By: Er. Hari Aryal [haryal4@gmail.com] Reference: W. Stallings | 19

 Fig 4-15: SIMD array processor organization

For more notes visit https://collegenote.pythonanywhere.com

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19

