
Unit 6

State Management on ASP.NET Core Application

1



STATE MANAGEMENT ON STATELESS HTTP

 HTTP is a stateless protocol. So, HTTP requests are independent messages that don’t retain user

values or app states. We need to take additional steps to manage state between the requests.

 State can be managed in our application using several approaches.

2

Storage Approach Description

Cookies HTTP cookies. May include data stored using server-side app code.

Session state HTTP cookies and server-side app code

TempData HTTP cookies or session state

Query strings HTTP query strings

Hidden fields HTTP form fields

HttpContext Server-side app code

Cache Cache Server-side app code



SERVER-SIDE STRATEGIES: SESSION STATE, TEMPDATA, 
USING HTTPCONTEXT

Session State

 Session state is an ASP.NET Core mechanism to store user data while the
user browses the application.

 It uses a store maintained by the application to persist data across
requests from a client. We should store critical application data in the
user’s database and we should cache it in a session only as a performance
optimization if required.

 ASP.NET Core maintains the session state by providing a cookie to the
client that contains a session ID. The browser sends this cookie to the
application with each request. The application uses the session ID to fetch
the session data.

3



SESSION STATE

While working with the Session state, we should keep the following things in mind:

 A Session cookie is specific to the browser session

 When a browser session ends, it deletes the session cookie

 If the application receives a cookie for an expired session, it creates a new

session that uses the same session cookie

 An Application doesn’t retain empty sessions

 The application retains a session for a limited time after the last request. The

app either sets the session timeout or uses the default value of 20 minutes

 Session state is ideal for storing user data that are specific to a particular session

but doesn’t require permanent storage across sessions

4



A Session State Example

 We need to configure the session state before using it in our

application. This can be done in the ConfigureServices() method

in the Startup.cs class:

services.AddSession();

 The order of configuration is important and we should invoke the

UseSession() before invoking UseMVC().

 Let’s create a controller with endpoints to set and read a value

from the session:

5



public class WelcomeController : Controller {

public IActionResult Index()

{

HttpContext.Session.SetString("Name", "John");

HttpContext.Session.SetInt32("Age", 32);

return View();

}

public IActionResult Get() {

User u = new User()

{

Name = HttpContext.Session.GetString("Name"),

Age = HttpContext.Session.GetInt32("Age").Value

};

return View(u);

}

}
6



A Session State Example

 The Index() method sets the values into session and Get()

method reads the values from the session and passes them into

the view.

 Let’s auto-generate a view to display the model values by right-

clicking on the Get() method and using the “Add View” option.

 Now let’s run the application and navigate to /welcome.

 This will set the session values.

 Now let’s navigate to /welcome/get:

7



TempData

 TempData property which can be used to store data until it is read.

 TempData is particularly useful when we require the data for more

than a single request. We can access them from controllers and

views.

 TempData is implemented by TempData providers using either

cookies or session state.

 Let’s create a controller with three endpoints. In the First() method,

let’s set a value into TempData. Then let’s try to read it

in Second() and Third() methods:
8



public class TempDataController : Controller {

public IActionResult First() {

TempData["UserId"] = 101;

return View();

}

public IActionResult Second() {

var userId = TempData["UserId"] ?? null;

return View();

}

public IActionResult Third() {

var userId = TempData["UserId"] ?? null;

return View();

}

}
9



TempData

 Now let’s run the application by placing breakpoints in the

Second() and Third() methods.

 We can see that the TempData is set in the First() request and

when we try to access it in the Second() method, it is available.

But when we try to access it in the Third() method, it is

unavailable as is retains its value only till its read.

 Now let’s move the code to access TempData from the controller

methods to the views.

10



Let’s create a view for the Second() action method:

@{

ViewData["Title"] = "Second";

var userId = TempData["UserId"].ToString();

}

<h1>Second</h1>

User Id : @userId

Similarly, let’s create a view for the Third() action method:

@{

ViewData["Title"] = "Third";

var userId= TempData["UserId"].ToString();

}

<h1>Third</h1>

User Id : @userId

Let’s run the application and navigate to /first, /second and /third

11



 We can see that TempData is available when we read it for the first time and then it
loses its value. Now, what if we need to persist the value of TempData even after
we read it?

 We have two ways to do that:

◦ TempData.Keep()/TempData.Keep(string key): This method retains the value corresponding
to the key passed in TempData. If no key is passed, it retains all values in TempData.

◦ TempData.Peek(string key): This method gets the value of the passed key from TempData
and retains it for the next request.

 Let’s slightly modify our second view with one of these methods:

var userId = TempData["UserId"].ToString();

TempData.Keep();

// OR

var userId = TempData.Peek("UserId").ToString();

 Now let’s run the application and navigate to /first, /second and /third.

 We can see that the TempData value persists in the third page even after its read on
the second page.

12



Using HttpContext

 A HttpContext object holds information about the current HTTP

request. The important point is, whenever we make a new HTTP

request or response then the Httpcontext object is created. Each time

it is created it creates a server current state of a HTTP request and

response.

 It can hold information like: Request, Response, Server, Session, Item,

Cache, User's information like authentication and authorization and

much more.

 As the request is created in each HTTP request, it ends too after the

finish of each HTTP request or response.
13



Example to Check request processing time using 
HttpContext class

 This example check the uses of the HttpContext class. In the global.aspx page

we know that a BeginRequest() and EndRequest() is executed every time

before any Http request. In those events we will set a value to the context

object and will detect the request processing time.

protected void Application_BeginRequest(object sender, EventArgs e) {

HttpContext.Current.Items.Add("Begintime", DateTime.Now.ToLongTimeString());

}

protected void Application_EndRequest(object sender, EventArgs e) {

TimeSpan diff = Convert.ToDateTime(DateTime.Now.ToLongTimeString()) -

Convert.ToDateTime(HttpContext.Current.Items["Begintime"].ToString());

}

14



Example to access current information using 
HttpContext class

protected void Page_Load(object sender, EventArgs e) {

Response.Write("Request URL"+ HttpContext.Current.Request.Url)

Response.Write("Number of Session variable" +

HttpContext.Current.Session.Count);

Response.Write("current Timestamp" + HttpContext.Current.Timestamp);

Response.Write("Object in Application level " +

HttpContext.Current.Application.Count);

Response.Write("Is Debug Enable in current Mode?" +

HttpContext.Current.IsDebuggingEnabled);

}

15



CACHE CLIENT-SIDE STRATEGIES

 COOKIES,

 QUERY STRINGS,

 HIDDEN FIELDS

16



Cookies

Reading Cookie
//read cookie from IHttpContext Accessor

string cookieValueFromContext =

httpContextAccessor.HttpContext.Request.Cookies["key"];

//read cookie from Request object

string cookieValueFromReq = Request.Cookies[“key"];

Remove Cookie

Response.Cookies.Delete(key);

17



Cookies

Writing cookie

 In this example, SetCookie method show how to write cookies.

 CookieOption is available to extend the cookie behavior.

public void SetCookie(string key, string value, int? expireTime) {

CookieOptions option = new CookieOptions();

if (expireTime.HasValue)

option.Expires = DateTime.Now.AddMinutes(expireTime.Value);

else

option.Expires = DateTime.Now.AddMilliseconds(10);

Response.Cookies.Append(key, value, option);

}

18



Query strings

 We can pass a limited amount of data from one request to another by adding it to
the query string of the new request. This is useful for capturing the state in a
persistent manner and allows the sharing of links with the embedded state.

public IActionResult GetQueryString(string name, int age) {

User newUser = new User()

{

Name = name,

Age = age

};

return View(newUser);

}

19



Query strings

 Now let’s invoke this method by passing query string parameters:

 /welcome/getquerystring?name=John&age=31

20



Query strings

 We can retrieve both the name and age values from the query string and

display it on the page.

 As URL query strings are public, we should never use query strings for

sensitive data.

 In addition to unintended sharing, including data in query strings will make

our application vulnerable to Cross-Site Request Forgery (CSRF) attacks,

which can trick users into visiting malicious sites while authenticated.

Attackers can then steal user data or take malicious actions on behalf of the

user.

21



Hidden Fields

 We can save data in hidden form fields and send back in the next request.

 Sometimes we require some data to be stored on the client side without

displaying it on the page. Later when the user takes some action, we’ll need

that data to be passed on to the server side. This is a common scenario in

many applications and hidden fields provide a good solution for this.

 Let’s add two methods in our WelcomeController:

22



[HttpGet]

public IActionResult SetHiddenFieldValue() {

User newUser = new User() {

Id = 101, Name = "John", Age = 31

};

return View(newUser);

}

[HttpPost]

public IActionResult SetHiddenFieldValue(IFormCollection keyValues) {

var id = keyValues["Id"];

return View();

}
23



Hidden Fields

 The GET version of theSetHiddenValue() method creates a user object and passes

that into the view.

 We use the POST version of the SetHiddenValue() method to read the value of a

hidden field Id from FormCollection.

 In the View, we can create a hidden field and bind the Id value from Model:

◦ @Html.HiddenFor(model =>model.Id)

 Then we can use a submit button to submit the form:

◦ <input type="submit" value="Submit" />

 Now let’s run the application and navigate to /Welcome/SetHiddenFieldValue
24



Hidden Fields

25



Hidden Fields

 On inspecting the page source, we can see that a hidden field is generated on the page

with the Id as the value: <input id="Id" name="Id" type="hidden" value="101">

 Now click the submit button after putting a breakpoint in the POST method. We can

retrieve the Id value from the FormCollection

 Since the client can potentially tamper with the data, our application must always

revalidate the data stored in hidden fields.

26



Discussion Exercise

1. Write about the State Management Strategies.

2. What is Session State? Show with an example to manage session state in

ASP.NET Core.

3. Show the difference between TempData and Using HttpContext with suitable

example.

4. How do you manage to handle state with client side strategies?

27


