
https://collegenote.pythonanywhere.com/

Function Templates and Exception

Handling
Templates

An important feature of C++ is templates which provide great flexibility to the language.

Templates support generic programming, allows developing reusable software

components such as function, classes, etc supporting different data types in a single

framework. For example, function such as sort, swap which support various data types

can be developed.

A template in C++ allows the construction of a family of template functions and class to

perform the same operation on different data types. The templates declared for function

are called function templates and those declared for classes are called class templates.

They perform appropriate operations depending on the data type of the parameters passed

to them. It allows a single template to deal with a generic data type T.

Function Templates

The limitation of function is they can operate only on a particular data type. It can be

overcome by defining that function as a function template or generic function. A function

template specifies how an individual function can be constructed. Consider the following

program:
//function overloading

//multiple function with same name

//showing need for template

#include<iostream.h>

#include<conio.h>

int max(int ,int);

long max(long, long);

float max(float,float);

char max(char,char);

void main()

{

 int i1=15,i2=20;

 cout<<"Greater is "<<max(i1,i2)<<endl;

 long l1=40000, l2=38000;

 cout<<"Greater is "<<max(l1,l2)<<endl;

 float f1=55.05, f2=67.777;

 cout<<"Greater is "<<max(f1,f2)<<endl;

 char c1='a',c2='A';

 cout<<"Greater is "<<max(c1,c2)<<endl;

 getch();

}

int max(int i1, int i2)

{

 return(i1>i2?i1:i2);

}

long max(long l1, long l2)

{

 return(l1>l2?l1:l2);

}

https://collegenote.pythonanywhere.com/

float max(float f1, float f2)

{

 return(f1>f2?f1:f2);

}

char max(char c1, char c2)

{

 return(c1>c2?c1:c2);

}

Above program of multiple max functions are used to find greater value among two, for

different data types. This illustrates the need for function templates. The program consists

of 4 max functions.
int max(int ,int);

long max(long, long);

float max(float,float);

char max(char,char);

Whose logic of finding greater value is same and differs only in terms of data types. The

C++ template features enables substitution of a single piece of code for all these

overloaded function as follows.

template <class T>

T max(T a, T b)

{

 return(a>b?a:b);

}

Such functions are known as function templates. When max operation is requested on

operands of any data types, the compiler creates a function internally without the user

intervention and invokes the same.

A function template is prefixed with the keyword template and a list if template type

arguments. The template-type arguments are called generic data types, since their

memory requirement and data representation is not known in the declaration of the

function template. It is known only at the point of a call to a function template.

 Template <class T, …..>

 Return_type function_name(arguments)

 {

 …………..//body of template

 …………..

 }

//find greater using template

#include<iostream.h>

#include<conio.h>

template <class T>

T max(T a, T b)

{

 return(a>b?a:b);

}

https://collegenote.pythonanywhere.com/

void main()

{

 int i1=15,i2=20;

 cout<<"Greater is "<<max(i1,i2)<<endl;

 long l1=40000, l2=38000;

 cout<<"Greater is "<<max(l1,l2)<<endl;

 float f1=55.05, f2=67.777;

 cout<<"Greater is "<<max(f1,f2)<<endl;

 char c1='a',c2='A';

 cout<<"Greater is "<<max(c1,c2)<<endl;

 getch();

}

Function and Function Template

Function templates are not suitable for handling all data types, so it is necessary to

override function templates by using normal function for specific data types. If a program

has both the function and function template with the same name, first compiler selects the

normal function, if it matches with the requested data type, otherwise it creates a function

using a function template.

//function with function template

#include<iostream.h>

#include<string.h>

#include<conio.h>

template <class T>

T max(T a, T b)

{

 return(a>b?a:b);

}

//for string data types

char *max(char *a, char *b)

{

 if(strcmp(a,b)>0)

 return a;

 else

 return b;

}

void main()

{

 int i1=15,i2=20;

 cout<<"Greater is "<<max(i1,i2)<<endl;

 long l1=40000, l2=38000;

 cout<<"Greater is "<<max(l1,l2)<<endl;

 float f1=55.05, f2=67.777;

 cout<<"Greater is "<<max(f1,f2)<<endl;

 char c1='a',c2='A';

 cout<<"Greater is "<<max(c1,c2)<<endl;

 char str1[]="apple", str2[]="zebra";

 cout<<"greater is "<<max(str1,str2);

 getch();

}

https://collegenote.pythonanywhere.com/

Overloaded Function Templates
The function templates can also be overloaded with multiple declarations. Similar to

overloading of normal functions, overloaded function templates must differ either in

terms of number of parameters or their type.

//overloading function template

//overloaded function templates

#include<iostream.h>

#include<conio.h>

template <class T>

void print(T data)

{

 cout<<data<<endl;

}

template <class T>

void print(T data, int n)

{

 for(int i=0;i<n;i++)

 cout<<data<<endl;

}

void main()

{

 print(1); // 1

 print(1.5); //1.5

 print(420,2); //420 two times

 print("my Nepal my pride",3); //3 times

 getch();

}

Class Templates

Similar to functions, classes can also be declared to operate on different data types. Such

classes are called class templates. A class template specifies how individual classes can

be constructed similar to normal class specification. These classes model a generic class

which supports similar operations for different data types. A generic stack like generic

function can be created which can be used for storing data of type integer, floating

number, character etc.

//implementation of stack class as template

#include<iostream.h>

#include<stdlib.h>

#include<conio.h>

#define max 20

template <class T>

class stack

{

 private:

 T s[max];

 int top;

 public:

https://collegenote.pythonanywhere.com/

 stack() //constructor

 { top=-1;}

 void push(T x)//put number on stack

 {

 s[++top]=x;

 }

 T pop()//take number from stack

 {

 return s[top--];

 }

};

void main()

{

 //for integer data type

 stack <int> s1;

 s1.push(11);

 s1.push(22);

 s1.push(33);

 cout<<"\nNumber Popped:"<<s1.pop(); //33

 cout<<"\nNumber Popped:"<<s1.pop(); //22

 s1.push(44);

 cout<<"\nNumber Popped:"<<s1.pop(); //44

 //for floating point data type

 stack <float> s2;

 s2.push(11.11);

 s2.push(22.22);

 s2.push(33.33);

 cout<<"\nNumber Popped:"<<s2.pop(); //33.33

 cout<<"\nNumber Popped:"<<s2.pop(); //22.22

 s2.push(44.44);

 cout<<"\nNumber Popped:"<<s2.pop(); //44.44

//for character data type

 stack <char> s3;

 s3.push('A');

 s3.push('B');

 s3.push('C');

 cout<<"\nNumber Popped:"<<s3.pop(); //C

 cout<<"\nCharcter Popped:"<<s3.pop(); //B

 s3.push('D');

 cout<<"\nCharcter Popped:"<<s3.pop(); //D

 getch();

}

https://collegenote.pythonanywhere.com/

Exception Handling

An exception is a problem that arises during the execution of a program. A C++

exception is a response to an exceptional circumstance that arises while a program is

running, such as an attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. C++

exception handling is built upon three keywords: try, catch, and throw.

 throw: A program throws an exception when a problem shows up. This is done

using a throw keyword.

 catch: A program catches an exception with an exception handler at the place in a

program where you want to handle the problem. The catch keyword indicates the

catching of an exception.

 try: A try block identifies a block of code for which particular exceptions will be

activated. It's followed by one or more catch blocks.

Exceptions provide a way to react to exceptional circumstances (like runtime errors) in

programs by transferring control to special functions called handlers.

To catch exceptions, a portion of code is placed under exception inspection. This is done

by enclosing that portion of code in a try-block. When an exceptional circumstance arises

within that block, an exception is thrown that transfers the control to the exception

handler. If no exception is thrown, the code continues normally and all handlers are

ignored.

An exception is thrown by using the throw keyword from inside the try block.

Exception handlers are declared with the keyword catch, which must be placed

immediately after the try block:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

// exceptions

#include <iostream>

using namespace std;

int main () {

 try

 {

 throw 20;

 }

 catch (int e)

 {

 cout << "An exception occurred.

Exception Nr. " << e << '\n';

 }

 return 0;

}

An exception occurred.

Exception Nr. 20

Edit

&
Run

http://www.cplusplus.com/doc/tutorial/exceptions/
http://www.cplusplus.com/doc/tutorial/exceptions/
http://www.cplusplus.com/doc/tutorial/exceptions/

https://collegenote.pythonanywhere.com/

The code under exception handling is enclosed in a try block. In this example this code

simply throws an exception:

 throw 20;

A throw expression accepts one parameter (in this case the integer value 20), which is

passed as an argument to the exception handler.

The exception handler is declared with the catch keyword immediately after the closing

brace of the try block. The syntax for catch is similar to a regular function with one

parameter. The type of this parameter is very important, since the type of the argument

passed by the throw expression is checked against it, and only in the case they match, the

exception is caught by that handler.

Multiple handlers (i.e., catch expressions) can be chained; each one with a different

parameter type. Only the handler whose argument type matches the type of the exception

specified in the throw statement is executed.

If an ellipsis (...) is used as the parameter of catch, that handler will catch any

exception no matter what the type of the exception thrown. This can be used as a default

handler that catches all exceptions not caught by other handlers:

1

2

3

4

5

6

try {

 // code here

}

catch (int param) { cout << "int exception"; }

catch (char param) { cout << "char exception"; }

catch (...) { cout << "default exception"; }

In this case, the last handler would catch any exception thrown of a type that is

neither int nor char.

After an exception has been handled the program, execution resumes after the try-

catch block, not after the throwstatement!.

It is also possible to nest try-catch blocks within more external try blocks. In these

cases, we have the possibility that an internal catch block forwards the exception to its

external level. This is done with the expression throw; with no arguments. For example:

1

2

3

4

5

6

7

8

try {

 try {

 // code here

 }

 catch (int n) {

 throw;

 }

}

https://collegenote.pythonanywhere.com/

9

10

11

catch (...) {

 cout << "Exception occurred";

}

Exception specification

Older code may contain dynamic exception specifications. They are now deprecated in

C++, but still supported. A dynamic exception specification follows the declaration of a

function, appending a throw specifier to it. For example:

 double myfunction (char param) throw (int);

This declares a function called myfunction, which takes one argument of type char and

returns a value of type double. If this function throws an exception of some type other

than int, the function calls std::unexpected instead of looking for a handler or

calling std::terminate.

If this throw specifier is left empty with no type, this means that std::unexpected is called

for any exception. Functions with no throw specifier (regular functions) never

call std::unexpected, but follow the normal path of looking for their exception handler.

1

2

int myfunction (int param) throw(); // all exceptions call unexpected

int myfunction (int param); // normal exception handling

http://www.cplusplus.com/unexpected
http://www.cplusplus.com/terminate
http://www.cplusplus.com/unexpected
http://www.cplusplus.com/unexpected

https://collegenote.pythonanywhere.com/

/* Program for Exception Handling Divide by zero Using

C++ Programming */

#include<iostream.h>

#include<conio.h>

void main()

{

int a,b,c;

float d;

clrscr();

cout<<"Enter the value of a:";

cin>>a;

cout<<"Enter the value of b:";

cin>>b;

cout<<"Enter the value of c:";

cin>>c;

try

{

if((a-b)!=0)

{

d=c/(a-b);

cout<<"Result is:"<<d;

}

else

{

throw(a-b);

}

}

catch(int i)

{

cout<<"Answer is infinite because a-b is:"<<i;

}

getch();

}

Output

Enter the value for a: 20

Enter the value for b: 20

Enter the value for c: 40

https://collegenote.pythonanywhere.com/

Answer is infinite because a-b is: 0

