
Design and Analysis of
Algorithms
(CSC-314)

B.Sc. CSIT

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Complexity Theory:
 Computational complexity theory focuses on classifying

computational problems according to their resource usage, and
relating these classes to each other.

 A computational problem is a task solved by a computer.

 A computation problem is solvable by mechanical application of
mathematical steps, such as an algorithm.

 We can say, Computational complexity theory is a subfield of
theoretical computer science one of whose primary goals is to
classify and compare the practical difficulty of solving computational
problems.

 e.g. given two natural numbers n and m, are they relatively
prime?

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Complexity Theory:
 Closely related fields in theoretical computer science are analysis

of algorithms and computability theory.

 A key distinction between analysis of algorithms and computational
complexity theory is that

 the former is devoted to analyzing the amount of resources
needed by a particular algorithm to solve a problem,

 whereas the latter asks a more general question about all
possible algorithms that could be used to solve the same
problem.

 More precisely, computational complexity theory tries to classify
problems that can or cannot be solved with appropriately
restricted resources.

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Complexity Theory:

 Let’s start by reminding ourselves of some common functions, ordered by
how fast they grow.

 Computer Scientists divide these functions into two classes:

 Polynomial functions

 Exponential functions

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Polynomial functions / Polynomial :

 Any function that is O(nk), i.e. bounded from above by nk for some
constant k.

 E.g. O(1), O(log n), O(n), O(n × log n), O(n2), O(n3)

 we defined ‘polynomial’ to be any function of the form

 aknk + ak−1nk−1 + . . . + a1n11 + a0.

 But here the word ‘polynomial’ is used to merge together functions that
are bounded from above by polynomials.

 So, log n and n × log n, which are not polynomials in our original sense,
are polynomials by our alternative definition, because they are bounded
from above by, e.g., n and n2 respectively..

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Polynomial functions / Polynomial :

 An algorithm is said to be solvable in polynomial time if the number
of steps required to complete the algorithm for a given input is
O(nk) for some non-negative integer k, where n is the complexity of
the input.

 Polynomial-time algorithms are said to be "fast."

 Most familiar mathematical operations such as addition,
subtraction, multiplication, and division, as well as computing
square roots, powers, and logarithms, can be performed in
polynomial time.

 Computing the digits of most interesting mathematical constants,
including pi and e, can also be done in polynomial time.

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Exponential functions/ Super Polynomial :

 The remaining functions

 E.g. O(2n), O(n!), O(nn)

 This is a real abuse of terminology.

 A function of the form kn is genuinely exponential.

 But now some functions which are worse than polynomial but not quite
exponential, such as O(nlog n), are also (incorrectly) called exponential.

 On the other hands, some functions which are worse than exponential,
such as the super exponential, e.g. O(nn), will also (incorrectly) be
called exponential.

 A better word than ‘exponential’ would be ‘super-polynomial’. But
‘exponential’ is what everyone uses, so it’s what we’ll use.

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Tractable Problem:

 A problem that is solvable by a polynomial-time algorithm.

 The upper bound is polynomial.

 Examples: Searching of ordered and unordered list, sorting list,
MST, multiplication of integer etc.

 Intractable Problem:

 A problem that cannot be solved by a polynomial-time algorithm.

 The lower bound is exponential.

 Examples: Tower of Hanoi, list of all permutations of n numbers
etc.

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Complexity class:

 A complexity class is the set of all of the computational problems
which can be solved using a certain amount of a certain
computational resource.

 Class P problem

 Class NP problem

 Class NP Complete problem

 Class NP Hard problem

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Complexity class:



 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 The complexity class P:

 P is the complexity class containing decision problems which can
be solved by a deterministic Turing machine using a polynomial
amount of computation time, or polynomial time.

 P is often taken to be the class of computational problems which
are "efficiently solvable" or "tractable“.

 Problems that are solvable in theory, but cannot be solved in
practice, are called intractable.

 There exist problems in P which are intractable in practical terms;
for example, some require at least n 1000000 operations.

 P is known to contain many natural problems, including the
decision versions of linear programming, calculating the greatest
common divisor, and finding a maximum matching.

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 The complexity class NP:

 In computational complexity theory, NP ("Non deterministic
Polynomial time") is the set of decision problems solvable in
polynomial time on a non deterministic Turing machine.

 It is the set of problems that can be "verified" by a deterministic
Turing machine in polynomial time.

 All the problems in this class have the property that their solutions
can be checked effectively.

 This class contains many problems that people would like to be
able to solve effectively, including

 the Hamiltonian path problem (special case of TSP)

 the Vertex cover problem

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 The complexity class NP Complete:

 In complexity theory, the NP complete problems are the most difficult problems in NP ("non
deterministic polynomial time") in the sense that they are the ones most likely not to be in P.

 If one could find a way to solve any NP complete problem quickly (in polynomial time), then they
could use that algorithm to solve all NP problems quickly.

 At present, all known algorithms for NP complete problems require time that is super-polynomial
in the input size.

 To solve an NP complete problem for any nontrivial problem size, generally one of the following
approaches is used:

 Approximation

 Probabilistic

 N puzzle

 Knapsack problem

 Hamiltonian cycle problem

 Traveling salesman problem

 Subgraph isomorphism problem

 Subset sum problem

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 The complexity class NP Hard:

 NP-Hard problems (say X) can be solved if and only if there is a
NP-Complete problem c(say Y) that can be reducible into X in
polynomial time.

 NP-Hard Problem need not be in NP class

 NP-hard therefore means "at least as hard as any NP-problem,"
although it might, in fact, be harder.

 Example: Halting problem, Vertex cover problem, etc.

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Polynomial time reduction

 Given two problems A and B, a polynomial time reduction from A to B is a polynomial time
function f that transforms the instances of A into instances of B.

 such that the output of algorithm for the problem A on input instance x must be same as
the output of the algorithm for the problem B on input instance f(x) as shown in the figure
below.

 If there is polynomial time computable function f such that it is possible to reduce A to B,
then it is denoted as A ≤ p B.

 The function f described above is called reduction function and the algorithm for
computing f is called reduction algorithm.

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Boolean Satisfiability Problem

 Boolean Satisfiability or simply SAT is the problem of determining if a Boolean formula is
satisfiable or unsatisfiable.

 Satisfiable :

 If the Boolean variables can be assigned values such that the formula turns out to be
TRUE, then we say that the formula is satisfiable.

 Unsatisfiable :

 If it is not possible to assign such values, then we say that the formula is
unsatisfiable.

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Cook–Levin theorem or Cook’s theorem

 In computational complexity theory, the Cook–Levin theorem, also known as Cook’s
theorem, states that the Boolean satisfiability problem is NP-complete.

 That is, it is in NP, and any problem in NP can be reduced in polynomial time by a
deterministic Turing machine to the Boolean satisfiability problem.

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Approximation Algorithms

 An approximate algorithm is a way of dealing with NP-completeness for optimization
problem.

 This technique does not guarantee the best solution.

 The goal of an approximation algorithm is to come as close as possible to the optimum
value in a reasonable amount of time which is at most polynomial time.

 If we are dealing with optimization problem (maximization or minimization) with feasible
solution having positive cost then it is worthy to look at approximate algorithm for near
optimal solution.

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Vertex Cover Problem

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Vertex Cover Problem

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Vertex Cover Problem: Pseudo code

 Since E is represented using adjacency list the above algorithms takes O(V+E), since
each edges and vertex are processed only once.

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Vertex Cover Problem: Find the minimum vertex covered by the given graph using

vertex cover problem:



 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
 Vertex Cover Problem: (vertex cover running example for graph below)



 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
Vertex Cover Problem: Find the minimum vertex covered by the given graph using
vertex cover problem.



 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
Vertex Cover Problem:Find the minimum vertex covered by the given graph using
vertex cover problem.

 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
Vertex Cover Problem:Find the minimum vertex covered by the given graph using
vertex cover problem.



 Design and Analysis of Algorithms (CSC-314)

Unit-8: NP Completeness
Find the minimum vertex covered by the given graph using vertex cover problem.



Unit-8: NP Completeness

 Design and Analysis of Algorithms (CSC-314)

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

