
Software Testing

1



2



Software Testing

 Testing is intended to show that a program does what it is intended to do and to 
discover program defects before it is put into use. 

 When you test software, you execute a program using artificial data. 

 You check the results of the test run for errors, anomalies or information about the 
program’s non-functional attributes. 

 Can reveal the presence of errors NOT their absence.

 Testing is part of a more general verification and validation process, which also 
includes static validation techniques.

3



Program testing goals

 To demonstrate to the developer and the customer that the software meets 
its requirements. 
 For custom software, this means that there should be at least one test for every 

requirement in the requirements document. For generic software products, it means that 
there should be tests for all of the system features, plus combinations of these features, 
that will be incorporated in the product release.  

 To discover situations in which the behavior of the software is incorrect, 
undesirable or does not conform to its specification. 
 Defect testing is concerned with rooting out undesirable system behavior such as system 

crashes, unwanted interactions with other systems, incorrect computations and data 
corruption.

4



Validation and defect testing

 The first goal leads to validation testing
 You expect the system to perform correctly using a given set of test cases that reflect the 

system’s expected use. 

 The second goal leads to defect testing
 The test cases are designed to expose defects. The test cases in defect testing can be 

deliberately unclear and need not reflect how the system is normally used. 

5



Testing process goals

 V
a
l
i
d
a
t
i
o
n
 
t
e
s
t
i
n
g
 T

o
 
d
e
m
o
n
s
t
r
a
t
e
 
t
o
 
t
h
e
 
d
e
v
e
l
o
p
e
r
 
a
n
d
 
t
h
e
 
s
y
s
t
e
m
 
c
u
s
t
o
m
e
r
 
t
h
a
t
 
t
h
e
 
s
o
f
t
w
a
r
e
 
m
e
e
t
s
 
i
t
s
 
r
e
q
u
i
r
e
m
e
n
t
s
 

 A
 
s
u
c
c
e
s
s
f
u
l
 
t
e
s
t
 
s
h
o
w
s
 
t
h
a
t
 
t
h
e
 
s
y
s
t
e
m
 
o
p
e
r
a
t
e
s
 
a
s
 
i
n
t
e
n
d
e
d
.

 D
e
f
e
c
t
 
t
e
s
t
i
n
g
 T

o
 
d
i
s
c
o
v
e
r
 
f
a
u
l
t
s
 
o
r
 
d
e
f
e
c
t
s
 
i
n
 
t
h
e
 
s
o
f
t
w
a
r
e
 
w
h
e
r
e
 
i
t
s
 
b
e
h
a
v
i
o
r
 
i
s
 
i
n
c
o
r
r
e
c
t
 
o
r
 
n
o
t
 
i
n
 
c
o
n
f
o
r
m
a
n
c
e
 
w
i
t
h
 
i
t
s
 
s
p
e
c
i
f
i
c
a
t
i
o
n
 

 A
 
s
u
c
c
e
s
s
f
u
l
 
t
e
s
t
 
i
s
 
a
 
t
e
s
t
 
t
h
a
t
 
m
a
k
e
s
 
t
h
e
 
s
y
s
t
e
m
 
p
e
r
f
o
r
m
 
i
n
c
o
r
r
e
c
t
l
y
 
a
n
d
 
s
o
 
e
x
p
o
s
e
s
 
a
 
d
e
f
e
c
t
 
i
n
 
t
h
e
 
s
y
s
t
e
m
.

6



An input-output model of program testing 

7



 V
e
r
i
f
i
c
a
t
i
o
n
:
 

"
A
r
e
 
w
e
 
b
u
i
l
d
i
n
g
 
t
h
e
 
p
r
o
d
u
c
t
 
r
i
g
h
t
”
.
 T

h
e
 
s
o
f
t
w
a
r
e
 
s
h
o
u
l
d
 
c
o
n
f
o
r
m
 
t
o
 
i
t
s
 
s
p
e
c
i
f
i
c
a
t
i
o
n
.

 V
a
l
i
d
a
t
i
o
n
:

 
"
A
r
e
 
w
e
 
b
u
i
l
d
i
n
g
 
t
h
e
 
r
i
g
h
t
 
p
r
o
d
u
c
t
”
.
 T

h
e
 
s
o
f
t
w
a
r
e
 
s
h
o
u
l
d
 
d
o
 
w
h
a
t
 
t
h
e
 
u
s
e
r
 
r
e
a
l
l
y
 
r
e
q
u
i
r
e
s
.

Verification vs validation

8



V & V confidence

 A
i
m
 
o
f
 
V
 
&
 
V
 
i
s
 
t
o
 
e
s
t
a
b
l
i
s
h
 
c
o
n
f
i
d
e
n
c
e
 
t
h
a
t
 
t
h
e
 
s
y
s
t
e
m
 
i
s
 
‘
f
i
t
 
f
o
r
 
p
u
r
p
o
s
e
’
.

 D
e
p
e
n
d
s
 
o
n
 
s
y
s
t
e
m
’
s
 
p
u
r
p
o
s
e
,
 
u
s
e
r
 
e
x
p
e
c
t
a
t
i
o
n
s
 
a
n
d
 
m
a
r
k
e
t
i
n
g
 
e
n
v
i
r
o
n
m
e
n
t
 S

o
f
t
w
a
r
e
 
p
u
r
p
o
s
e

• T
h
e
 
l
e
v
e
l
 
o
f
 
c
o
n
f
i
d
e
n
c
e
 
d
e
p
e
n
d
s
 
o
n
 
h
o
w
 
c
r
i
t
i
c
a
l
 
t
h
e
 
s
o
f
t
w
a
r
e
 
i
s
 
t
o
 
a
n
 
o
r
g
a
n
i
s
a
t
i
o
n
.

 U
s
e
r
 
e
x
p
e
c
t
a
t
i
o
n
s

• U
s
e
r
s
 
m
a
y
 
h
a
v
e
 
l
o
w
 
e
x
p
e
c
t
a
t
i
o
n
s
 
o
f
 
c
e
r
t
a
i
n
 
k
i
n
d
s
 
o
f
 
s
o
f
t
w
a
r
e
.

 M
a
r
k
e
t
i
n
g
 
e
n
v
i
r
o
n
m
e
n
t

• G
e
t
t
i
n
g
 
a
 
p
r
o
d
u
c
t
 
t
o
 
m
a
r
k
e
t
 
e
a
r
l
y
 
m
a
y
 
b
e
 
m
o
r
e
 
i
m
p
o
r
t
a
n
t
 
t
h
a
n
 
f
i
n
d
i
n
g
 
d
e
f
e
c
t
s
 
i
n
 
t
h
e
 
p
r
o
g
r
a
m
.

9



 Software inspections Concerned with analysis of the static system 
representation to discover problems  (static verification)
 May be supplement by tool-based document and code analysis.

 Software testing Concerned with exercising and observing product behaviour 
(dynamic verification)
 The system is executed with test data and its operational behaviour is observed.

Inspections and testing

10



Inspections and testing 

11



Software inspections

 T
h
e
s
e
 
i
n
v
o
l
v
e
 
p
e
o
p
l
e
 
e
x
a
m
i
n
i
n
g
 
t
h
e
 
s
o
u
r
c
e
 
r
e
p
r
e
s
e
n
t
a
t
i
o
n
 
w
i
t
h
 
t
h
e
 
a
i
m
 
o
f
 
d
i
s
c
o
v
e
r
i
n
g
 
a
n
o
m
a
l
i
e
s
 
a
n
d
 
d
e
f
e
c
t
s
.

 I
n
s
p
e
c
t
i
o
n
s
 
n
o
t
 
r
e
q
u
i
r
e
 
e
x
e
c
u
t
i
o
n
 
o
f
 
a
 
s
y
s
t
e
m
 
s
o
 
m
a
y
 
b
e
 
u
s
e
d
 
b
e
f
o
r
e
 
i
m
p
l
e
m
e
n
t
a
t
i
o
n
.

 T
h
e
y
 
m
a
y
 
b
e
 
a
p
p
l
i
e
d
 
t
o
 
a
n
y
 
r
e
p
r
e
s
e
n
t
a
t
i
o
n
 
o
f
 
t
h
e
 
s
y
s
t
e
m
 
(
r
e
q
u
i
r
e
m
e
n
t
s
,
 
d
e
s
i
g
n
,
c
o
n
f
i
g
u
r
a
t
i
o
n
 
d
a
t
a
,
 
t
e
s
t
 
d
a
t
a
,
 
e
t
c
.
)
.

 T
h
e
y
 
h
a
v
e
 
b
e
e
n
 
s
h
o
w
n
 
t
o
 
b
e
 
a
n
 
e
f
f
e
c
t
i
v
e
 
t
e
c
h
n
i
q
u
e
 
f
o
r
 
d
i
s
c
o
v
e
r
i
n
g
 
p
r
o
g
r
a
m
 
e
r
r
o
r
s
.

12



Advantages of inspections

 During testing, errors can mask (hide) other errors. Because inspection is a 
static process, you don’t have to be concerned with interactions between 
errors.

 Incomplete versions of a system can be inspected without additional costs. If 
a program is incomplete, then you need to develop specialized test 
harnesses to test the parts that are available. 

 As well as searching for program defects, an inspection can also consider 
broader quality attributes of a program, such as compliance with standards, 
portability and maintainability. 

13



Inspections and testing

 I
n
s
p
e
c
t
i
o
n
s
 
a
n
d
 
t
e
s
t
i
n
g
 
a
r
e
 
c
o
m
p
l
e
m
e
n
t
a
r
y
 
a
n
d
 
n
o
t
 
o
p
p
o
s
i
n
g
 
v
e
r
i
f
i
c
a
t
i
o
n
 
t
e
c
h
n
i
q
u
e
s
.

 B
o
t
h
 
s
h
o
u
l
d
 
b
e
 
u
s
e
d
 
d
u
r
i
n
g
 
t
h
e
 
V
 
&
 
V
 
p
r
o
c
e
s
s
.

 I
n
s
p
e
c
t
i
o
n
s
 
c
a
n
 
c
h
e
c
k
 
c
o
n
f
o
r
m
a
n
c
e
 
w
i
t
h
 
a
 
s
p
e
c
i
f
i
c
a
t
i
o
n
 
b
u
t
 
n
o
t
 
c
o
n
f
o
r
m
a
n
c
e
 
w
i
t
h
 
t
h
e
 
c
u
s
t
o
m
e
r
’
s
 
r
e
a
l
 
r
e
q
u
i
r
e
m
e
n
t
s
.

 I
n
s
p
e
c
t
i
o
n
s
 
c
a
n
n
o
t
 
c
h
e
c
k
 
n
o
n
-
f
u
n
c
t
i
o
n
a
l
 
c
h
a
r
a
c
t
e
r
i
s
t
i
c
s
 
s
u
c
h
 
a
s
 
p
e
r
f
o
r
m
a
n
c
e
,
 
u
s
a
b
i
l
i
t
y
,
 
e
t
c
.

14



A model of the software testing process 

15



Stages of testing

 Development testing, where the system is tested during development to 
discover bugs and defects. 

 Release testing, where a separate testing team test a complete version of the 
system before it is released to users. 

 User testing, where users or potential users of a system test the system in 
their own environment.

16



Development testing

 Development testing includes all testing activities that are carried out by the 
team developing the system. 
 Unit testing, where individual program units or object classes are tested. Unit testing 

should focus on testing the functionality of objects or methods.

 Component testing, where several individual units are integrated to create composite 
components. Component testing should focus on testing component interfaces.

 System testing, where some or all of the components in a system are integrated and the 
system is tested as a whole. System testing should focus on testing component 
interactions.

17



Unit testing

 U
n
i
t
 
t
e
s
t
i
n
g
 
i
s
 
t
h
e
 
p
r
o
c
e
s
s
 
o
f
 
t
e
s
t
i
n
g
 
i
n
d
i
v
i
d
u
a
l
 
c
o
m
p
o
n
e
n
t
s
 
i
n
 
i
s
o
l
a
t
i
o
n
.

 I
t
 
i
s
 
a
 
d
e
f
e
c
t
 
t
e
s
t
i
n
g
 
p
r
o
c
e
s
s
.

 U
n
i
t
s
 
m
a
y
 
b
e
:
 I

n
d
i
v
i
d
u
a
l
 
f
u
n
c
t
i
o
n
s
 
o
r
 
m
e
t
h
o
d
s
 
w
i
t
h
i
n
 
a
n
 
o
b
j
e
c
t
 

 O
b
j
e
c
t
 
c
l
a
s
s
e
s
 
w
i
t
h
 
s
e
v
e
r
a
l
 
a
t
t
r
i
b
u
t
e
s
 
a
n
d
 
m
e
t
h
o
d
s
 

 C
o
m
p
o
s
i
t
e
 
c
o
m
p
o
n
e
n
t
s
 
w
i
t
h
 
d
e
f
i
n
e
d
 
i
n
t
e
r
f
a
c
e
s
 
u
s
e
d
 
t
o
 
a
c
c
e
s
s
 
t
h
e
i
r
 
f
u
n
c
t
i
o
n
a
l
i
t
y
.

18



Automated testing

 Whenever possible, unit testing should be automated so that tests are run 
and checked without manual intervention.

 In automated unit testing, you make use of a test automation framework to 
write and run your program tests. 

 Unit testing frameworks provide generic test classes that you extend to 
create specific test cases. They can then run all of the tests that you have 
implemented and report, often through some GUI, on the success of 
otherwise of the tests. 

19



Unit test effectiveness

 The test cases should show that, when used as expected, the component 
that you are testing does what it is supposed to do.

 If there are defects in the component, these should be revealed by test 
cases. 

 This leads to 2 types of unit test case:
 The first of these should reflect normal operation of a program and should show that the 

component works as expected. 

 The other kind of test case should be based on testing experience of where common 
problems arise. It should use abnormal inputs to check that these are properly processed 
and do not crash the component. 

20



Testing strategies

 Partition testing, where you identify groups of inputs that have common 
characteristics and should be processed in the same way. 
 You should choose tests from within each of these groups.

 Guideline-based testing, where you use testing guidelines to choose test 
cases. 
 These guidelines reflect previous experience of the kinds of errors that programmers 

often make when developing components.

21



Component testing

 Software components are often composite components that are made up of 
several interacting objects. 
 For example, in the weather station system, the reconfiguration component includes 

objects that deal with each aspect of the reconfiguration. 

 You access the functionality of these objects through the defined component 
interface. 

 Testing composite components should therefore focus on showing that the 
component interface behaves according to its specification. 
 You can assume that unit tests on the individual objects within the component have been 

completed. 

22



Interface testing

 Objectives are to detect faults due to interface errors or invalid assumptions 
about interfaces.

 Interface types
 Parameter interfaces Data passed from one method or procedure to another.

 Shared memory interfaces Block of memory is shared between procedures or functions.

 Procedural interfaces Sub-system encapsulates a set of procedures to be called by other 
sub-systems.

 Message passing interfaces Sub-systems request services from other sub-systems

23



Interface errors

 Interface misuse
 A calling component calls another component and makes an error in its use of its 

interface e.g. parameters in the wrong order.

 Interface misunderstanding
 A calling component embeds assumptions about the behaviour of the called component 

which are incorrect.

 Timing errors
 The called and the calling component operate at different speeds and out-of-date 

information is accessed.

24



System testing

 System testing during development involves integrating components to 
create a version of the system and then testing the integrated system.

 The focus in system testing is testing the interactions between components. 

 System testing checks that components are compatible, interact correctly 
and transfer the right data at the right time across their interfaces. 

 System testing tests the evolving behavior of a system. 

25



Testing policies

 Exhaustive system testing is impossible so testing policies which define the 
required system test coverage may be developed.

 Examples of testing policies:
 All system functions that are accessed through menus should be tested.

 Combinations of functions (e.g. text formatting) that are accessed through the same 
menu must be tested.

 Where user input is provided, all functions must be tested with both correct and incorrect 
input.

26



Test-driven development

 Test-driven development (TDD) is an approach to program development in 
which you inter-leave testing and code development.

 Tests are written before code and ‘passing’ the tests is the critical driver of 
development. 

 You develop code incrementally, along with a test for that increment. You 
don’t move on to the next increment until the code that you have developed 
passes its test. 

 TDD was introduced as part of agile methods such as Extreme 
Programming. However, it can also be used in plan-driven development 
processes. 

27



TDD process activities

 Start by identifying the increment of functionality that is required. This should 
normally be small and implementable in a few lines of code.

 Write a test for this functionality and implement this as an automated test. 

 Run the test, along with all other tests that have been implemented. Initially, 
you have not implemented the functionality so the new test will fail. 

 Implement the functionality and re-run the test. 

 Once all tests run successfully, you move on to implementing the next chunk 
of functionality.

28



Test-driven development

29



Benefits of test-driven development

 Code coverage 
 Every code segment that you write has at least one associated test so all code written 

has at least one test.

 Regression testing 
 A regression test suite is developed incrementally as a program is developed. 

 Simplified debugging 
 When a test fails, it should be obvious where the problem lies. The newly written code 

needs to be checked and modified. 

 System documentation 
 The tests themselves are a form of documentation that describe what the code should be 

doing. 

30



Regression testing

 Regression testing is testing the system to check that changes have not 
‘broken’ previously working code.

 In a manual testing process, regression testing is expensive but, with 
automated testing, it is simple and straightforward. All tests are rerun every 
time a change is made to the program.

 Tests must run ‘successfully’ before the change is committed.

31



Release testing

 Release testing is the process of testing a particular release of a system 
that is intended for use outside of the development team. 

 The primary goal of the release testing process is to convince the customer 
of the system that it is good enough for use.
 Release testing, therefore, has to show that the system delivers its specified 

functionality, performance and dependability, and that it does not fail during normal 
use. 

 Release testing is usually a black-box testing process where tests are only 
derived from the system specification. 

32



Release testing and system testing

 Release testing is a form of system testing.

 Important differences:
 A separate team that has not been involved in the system development, should be 

responsible for release testing.

 System testing by the development team should focus on discovering bugs in the system 
(defect testing). 

 The objective of release testing is to check that the system meets its requirements and is 
good enough for external use (validation testing).

33



Requirements based testing

 Requirements-based testing involves examining each requirement and 
developing a test or tests for it.

34



Performance testing

 P
a
r
t
 
o
f
 
r
e
l
e
a
s
e
 
t
e
s
t
i
n
g
 
m
a
y
 
i
n
v
o
l
v
e
 
t
e
s
t
i
n
g
 
t
h
e
 
e
m
e
r
g
e
n
t
 
p
r
o
p
e
r
t
i
e
s
 
o
f
 
a
 
s
y
s
t
e
m
,
 
s
u
c
h
 
a
s
 
p
e
r
f
o
r
m
a
n
c
e
 
a
n
d
 
r
e
l
i
a
b
i
l
i
t
y
.

 T
e
s
t
s
 
s
h
o
u
l
d
 
r
e
f
l
e
c
t
 
t
h
e
 
p
r
o
f
i
l
e
 
o
f
 
u
s
e
 
o
f
 
t
h
e
 
s
y
s
t
e
m
.

 P
e
r
f
o
r
m
a
n
c
e
 
t
e
s
t
s
 
u
s
u
a
l
l
y
 
i
n
v
o
l
v
e
 
p
l
a
n
n
i
n
g
 
a
 
s
e
r
i
e
s
 
o
f
 
t
e
s
t
s
 
w
h
e
r
e
 
t
h
e
 
l
o
a
d
 
i
s
 
s
t
e
a
d
i
l
y
 
i
n
c
r
e
a
s
e
d
 
u
n
t
i
l
 
t
h
e
 
s
y
s
t
e
m
 
p
e
r
f
o
r
m
a
n
c
e
 
b
e
c
o
m
e
s
 
u
n
a
c
c
e
p
t
a
b
l
e
.

 S
t
r
e
s
s
 
t
e
s
t
i
n
g
 
i
s
 
a
 
f
o
r
m
 
o
f
 
p
e
r
f
o
r
m
a
n
c
e
 
t
e
s
t
i
n
g
 
w
h
e
r
e
 
t
h
e
 
s
y
s
t
e
m
 
i
s
 
d
e
l
i
b
e
r
a
t
e
l
y
 
o
v
e
r
l
o
a
d
e
d
 
t
o
 
t
e
s
t
 
i
t
s
 
f
a
i
l
u
r
e
 
b
e
h
a
v
i
o
r
.

35



User testing

 User or customer testing is a stage in the testing process in which users or 
customers provide input and advice on system testing. 

 User testing is essential, even when comprehensive system and release 
testing have been carried out. 
 The reason for this is that influences from the user’s working environment have a major 

effect on the reliability, performance, usability and robustness of a system. These cannot 
be replicated in a testing environment.

36



Types of user testing

 Alpha testing
 Users of the software work with the development team to test the software at the 

developer’s site.

 Beta testing
 A release of the software is made available to users to allow them to experiment and to 

raise problems that they discover with the system developers.

 Acceptance testing
 Customers test a system to decide whether or not it is ready to be accepted from the 

system developers and deployed in the customer environment. Primarily for custom 
systems.

37



Stages in the acceptance testing process

 Define acceptance criteria

 Plan acceptance testing

 Derive acceptance tests

 Run acceptance tests

 Negotiate test results

 Reject/accept system

38


	Slide 1
	Slide 2
	Software Testing
	Program testing goals
	Validation and defect testing
	Testing process goals
	An input-output model of program testing
	Verification vs validation
	V & V confidence
	Inspections and testing
	Inspections and testing
	Software inspections
	Advantages of inspections
	Inspections and testing
	A model of the software testing process
	Stages of testing
	Development testing
	Unit testing
	Automated testing
	Unit test effectiveness
	Testing strategies
	Component testing
	Interface testing
	Interface errors
	System testing
	Testing policies
	Test-driven development
	TDD process activities
	Test-driven development
	Benefits of test-driven development
	Regression testing
	Release testing
	Release testing and system testing
	Requirements based testing
	Performance testing
	User testing
	Types of user testing
	Stages in the acceptance testing process

