Software Evolution

Review {Testing}

< Validation & Verification
< Inspection & Testing
<~ Stages of Testing

= Development Testing: Unit, Component and System Testing
* Release Testing: Requirements testing, Performance Testing
= User Testing: Alpha, Beta and Acceptance Testing

< Test Driven Development

Unit 9: Software Evolution (3 Hrs.)
Evolution Process: Legacy Systems; Software Maintenance

Evolution

=| Program Manager [=]=
File Options Window Help
=-| Main | - | =
=
2 & [H
File Manager Control Panel Print Manager Clipboard M5-D05
Yiewer Frompt

=
Windows PIF Editar
Setup

R
Version 3.11

! Microzoft Windows Program Manager
Copyright © 1985-1993 Microsoft Corp.

Ancessories

This product is licensed to:

Uszer

Company

= About Program Manager

Please t your h

Windows technical support.

386 Enhanced Mode
Memory:
System Resources:

50,290 KB Free
86% Free

Windows 3.11

& My Computer

] Fie Edt Wiew Go Favonles Help

* (1
I Eack

I

| Address | Fe| Edt View Go Favotes Help

|tk €| & . =

el Fongard

& ¢ B
Up it Copy

e

Paste

o)
Urdo

X

Delete

| Addess [= C:\

=

[Links @]Bestof the web &7 Channel Guide & Customize Links &Free HotMal @7+

=

| 98 (C:)

Select an item to
view its
description.

0 @

Compag

a @
My Docurments Oramin
= @

Plware

=

(3

—

L3

Orawinds

—3

L

Program Files

——

A
)

Recycled

-

148 objectls)

st | @ & A Y || EIMy Computer [Sex

[5:42] =] My Compuer

Windows 98

Thamwe Cunrgs

a

wikiHow

£ Interne
&F 1nvermet Explo

&™) E-mail
e Windows Media Player
@ Tou Windows %P

ﬁ Files and Settings Transfer
Wizard

All Programs D

__] My Documents
Lub My Recent Documents *
ﬂ My Pictures

J My Music

gj My Computer

(B contralpanei

@ oi:tf :‘usqrm Access and

_:é Printers and Faxes

@) tielp and Support

S search
=) Run...

E Lg ot [{D)] Turn Off Computer

Windows XP

Windows 10 4

Software change

< Software change is inevitable

* New requirements emerge when the software is used;

" Errors must be repaired,;

* New computers and equipment is added to the system,;

* The performance or reliability of the system may have to be improved.

< Systems are tightly coupled with their environment. When a system is installed
in an environment it changes that environment and therefore changes the
system requirements.

< Systems MUST be changed if they are to remain useful in an environment.

< A key problem for all organizations is implementing and managing change to
their existing software systems.

O <0 T

C O

®» S0 T~ N—T3SQ QO

Importance of evolution

A spiral model of development and evolution

Stages of Software

Inrhad
developmient Phase -put

Stages of Software

<> Evolution

* The stage in a software system’s life cycle where it is in operational use and is evolving
as new requirements are proposed and implemented in the system.

< Servicing

= At this stage, the software remains useful but the only changes made are those required
to keep it operational i.e. bug fixes and changes to reflect changes in the software’s
environment. No new functionality is added.

<> Phase-out

* The software may still be used but no further changes are made to it.

Evolution processes

ND Oy =S © « © O >0 — 5. OC

A

10

Change identification and evolution processes

Change identification
PICIOESS

Change proposals

11

The software evolution process

' ;

Change b et Relense
requests analysis planning implermentatsan

[: . J { Platform) I: Syste)
Fasull repain adaptation E'I.'Il'h!ll'h:EII:'I“'hl!l'ﬂ'

12

Change implementation

v

Proposed
changes

Requeremierits
analysis

Requirements
updatang

Softvware
develapmient

13

Change implementation

< lteration of the development process where the revisions to the system are
designed, implemented and tested.

< The first stage of change implementation may involve program
understanding, especially if the original system developers are not
responsible for the change implementation.

< During the program understanding phase, you have to understand how the
program is structured, how it delivers functionality and how the proposed
change might affect the program.

14

S5 0Q ° C

w OKQ S OV 5 O

< o 3

Urgent change requests

15

The emergency repair process

Change § Analze M ety o Deler modified
FRUESES sirce oade SOITER CO0e sSystem

16

Agile methods and evolution

< Agile methods are based on incremental development so the transition from
development to evolution is a seamless one.

= Evolution is simply a continuation of the development process based on frequent system
releases.

< Changes may be expressed as additional user stories.

17

V

I0 QO Y

SO ™™C —O0< O]

S Q

Program evolution dynamics

18

Lehman’s laws

A program that is used in a real-world environment must necessarily
change, or else become progressively less useful in that environment.

Continuing change

_ _ As an evolving program changes, its structure tends to become more
Increasing complexity ~ complex. Extra resources must be devoted to preserving and simplifying the
structure.

_ Program evolution is a self-regulating process. System attributes such as
Large program evolution sjze, time between releases, and the number of reported errors is
approximately invariant for each system release.

Over a program'’s lifetime, its rate of development is approximately constant

OligehlZehEl Slellig) and independent of the resources devoted to system development.

19

Lehman’s laws

Over the lifetime of a system, the incremental change in each

HOEEIUELEN Gy | oo o e approximately constant.

The functionality offered by systems has to continually increase to

Continuing growth maintain user satisfaction.

The quality of systems will decline unless they are modified to

Declining quality reflect changes in their operational environment.

Evolution processes incorporate multi-agent, multi-loop feedback
Feedback system systems and you have to treat them as feedback systems to
achieve significant product improvement.

20

> M
0

d Software maintenance

—_— Y4 >n.— C O

©

21

O O © £

22

Types of maintenance

= ©._. Cewu OC TS OO — O . O QO ©
A

> U
S

u Maintenance costs

® — — >

O) e O ®© - O

e

23

Maintenance cost factors

< Team stability
= Maintenance costs are reduced if the same staff are involved with them for some time.
< Contractual responsibility

* The developers of a system may have no contractual responsibility for maintenance so
there is no incentive to design for future change.

< Staff skills
= Maintenance staff are often inexperienced and have limited domain knowledge.
< Program age and structure

= As programs age, their structure is degraded and they become harder to understand and
change.

24

Q@ > S CcF0C T ~F0n ' 00

- O

System re-engineering

25

OO O0OC QO

~ n — =

Advantages of reengineering

® =™ ® 5 —

26

® Q O O ® O - C O W

QO — »w S0 T

Reengineering process activities

27

< ~+~— —®» c o

> - O

w

Reengineering cost factors

28

Preventative maintenance by refactoring

< Refactoring is the process of making improvements to a program to slow
down degradation through change.

< You can think of refactoring as ‘preventative maintenance’ that reduces the
problems of future change.

< Refactoring involves modifying a program to improve its structure, reduce its
complexity or make it easier to understand.

< When you refactor a program, you should not add functionality but rather
concentrate on program improvement.

29

Refactoring and reengineering

< Re-engineering takes place after a system has been maintained for some
time and maintenance costs are increasing.

< Refactoring is a continuous process of improvement throughout the
development and evolution process. It is intended to avoid the structure and
code degradation that increases the costs and difficulties of maintaining a
system.

30

®» S50 TN TS vQ QO

~ Q) 5 ~+

Legacy system management

31

> L

0
w Legacy system categories

9
u
a
I
|
t
y

I
0
W

32

Business value assessment

>3O 300000 >

O — cC O TSTw

33

Issues in business value assessment

< The use of the system

" |f systems are only used occasionally or by a small number of people, they may have a
low business value.

< The business processes that are supported

= A system may have a low business value if it forces the use of inefficient business
processes.

< System dependability

* |f a system is not dependable and the problems directly affect business customers, the
system has a low business value.

< The system outputs

* |f the business depends on system outputs, then the system has a high business value.

34

W ®nwoS—nwCWw

w o ®O O O T T

w QO

System quality assessment

35

	Slide 1
	Review {Testing}
	Slide 3
	Evolution
	Software change
	Importance of evolution
	A spiral model of development and evolution
	Stages of Software
	Stages of Software
	Evolution processes
	Change identification and evolution processes
	The software evolution process
	Change implementation
	Change implementation
	Urgent change requests
	The emergency repair process
	Agile methods and evolution
	Program evolution dynamics
	Lehman’s laws
	Lehman’s laws
	Software maintenance
	Types of maintenance
	Maintenance costs
	Maintenance cost factors
	System re-engineering
	Advantages of reengineering
	Reengineering process activities
	Reengineering cost factors
	Preventative maintenance by refactoring
	Refactoring and reengineering
	Legacy system management
	Legacy system categories
	Business value assessment
	Issues in business value assessment
	System quality assessment

