
1

Unit 1: Review of Web Technologies

 1.1 Introduction
Web technology is related to the interface between web servers and their clients using the internet.
This information includes markup languages, programming interfaces and languages, and standards for
document identification and display.

Origin of Internet
Its origin dates back to 1969 when it was called ARPAnet (Advanced Research Project Agency network)
and was exclusively used for military purposes. It soon emerged with non-governmental and parallel
academic networks which grew and eventually came to be called Internet in the year 1979.

Today, Internet is simply a network of world-wide network of computer networks connected to each
other by devices called Internetworking devices. The computers on the Internet contains information
on history, politics and medicine, science and technology, sports, current events and many more topics
and thus it is also called ‘information super highway’. The Internet is growing exponentially every day
and has made the planet a ‘global village’ where everybody can be connected to each other.

Applications of Internet
 Exchange emails.
 Send/receive documents, sound, animation and graphics or picture files all over the world.
 Browse information on matters related to academic and professional topics.
 Join specific topic-oriented discussion groups - Blogs.
 Sell products and services – E-commerce.
 Entertainment (games, music, etc).
 Download software and software updates.
 Online education and exams.

Internet vs. Intranet vs. Extranet
Internet: A worldwide network of thousands of smaller computer networks and millions of commercial,
educational, government and personal computers. The Internet is like an electronic city with virtual
libraries, stores, art galleries and so on.
Intranet: A network within an organization that uses Internet technologies (such as the HTTP or FTP
protocol). Intranet can be called internal Internet. Only the employees of the company can use this
network.
Extranet: An Extranet is an Intranet that supports controlled public access. Extranets offer controlled
access to an Intranet for remote access and e-commerce purposes.

Internet in Nepal
The Internet was first introduced into Nepal in 1993 in a venture of the then Royal Nepal Academy of
Science and Technology (RONAST) and a private company, Mercantile Office Systems (MOS).

ISP (Internet Service Provider)
A business that provides access to the Internet for such things as electronic mail, chat rooms, or use of
the World Wide Web. They supply Internet access in wide range from dial-up modem to DSL and cable

For more notes visit https://collegenote.pythonanywhere.com

2

modem broadband service to dedicated T1/T3 lines (reserved circuits that operate over either copper
or fiber optic cables). Some ISP’s are multinational, offering access in many locations while others are
limited to a specific region. Example: Worldlink Communications, Mercantile Communications (First ISP
in Nepal), Nepal Telecommunications Corporation, Infocom Pvt. Ltd., Websurfer Nepal etc.

URI vs. URL vs. URN
 URIs identify and URLs locate; however, locators are also identifiers, so every URL is also a URI,

but there are URIs which are not URLs.
 Bishnu Rawal: This is my name, which is an identifier. It is like a URI, but cannot be a URL, as it

tells you nothing about my location or how to contact me. In this case it also happens to identify
at least 5 other people in the Nepal alone.

 4914 West Bay Street, Nassau, Bahamas: This is a locator, which is an identifier for that physical
location. It is like both a URL and URI (since all URLs are URIs), and also identifies
me indirectly as "resident of..". In this case it uniquely identifies me, but that would change if I
get a roommate.

 URNs (Uniform Resource Name) are URLs , except those are much more regulated and intended
to be globally unique.

 Examples:
o URL: ftp://ftp.is.co.za/rfc/rfc1808.txt
o URL: http://www.ietf.org/rfc/rfc2396.txt
o URL: ldap://[2001:db8::7]/c=GB?objectClass?one
o URL: mailto:John.Doe@example.com
o URL: news:comp.infosystems.www.servers.unix
o URL: telnet://192.0.2.16:80/
o URN (not URL): rn:oasis:names:specification:docbook:dtd:xml:4.1.2
o URN (not URL): tel:+1-816-555-1212 (?)
o URN (not URL): isbn:0-486-27557-4 (Shakespeare's play Romeo and Juliet)
o

Web URL Syntax
URLs have three basic parts: (Example- “http://www.smccd.edu/accounts/csmlibrary/index.htm”)

1. Protocol: identifies the method (set of rules) by which the resource is transmitted. “http://”
2. server name: Also called domain name, identifies the computer on which the resource is found.

The domain (.org, .edu, .gov etc) is important because it usually identifies the type of
organization that created or sponsored the resource. ” www.smccd.edu”

3. resource ID: name of the file for the page and any directories or subdirectories under which it is
stored on the specified computer.” /accounts/csmlibrary/index.htm”

WWW (World Wide Web)
WWW is a system of interlinked hypertext documents that are accessed via the Internet. With a web
browser, one can view web pages that may contain text, images, videos, and
other multimedia and navigate between them via hyperlinks.

 Tim Berners Lee, a British computer scientist invented WWW in 1989.
 Consists of all the public Web sites connected to the Internet worldwide, including the client

devices (such as computers and cell phones) that access Web content.
 The WWW is just one of many applications of the Internet and computer networks and is based

on: HTML, HTTP, Web servers and Web browsers.
 How does it work?

For more notes visit https://collegenote.pythonanywhere.com

3

o Web information is stored in documents called Web pages (Html files). Web pages are
files stored on computers called Web servers. Computers reading the Web pages are
called Web clients. Web clients view the pages with a program called a Web browser.

o A web browser is client software that allows you to display and interact with a hypertext
document hosted on the web server. Popular browsers are Chrome, Mozilla Firefox,
Opera, Internet Explorer and Netscape Navigator. A browser fetches a Web page from a
server by a request. A request is a standard HTTP request containing a page location
address. Something like: http://www.someone.com/page.htm

o All Web pages contain display instructions like HTML tags which the browser reads to
display page information.

Who is making web standards?
 The rule-making body of the Web is the W3C (World Wide Web Consortium) founded in 1994

and currently led by Tim Berners-Lee (Inventor of WWW), the consortium is made up of member
organizations which maintain full-time staff for the purpose of working together with IETF in the
development of standards for the World Wide Web. As of 24 May 2014, the W3C has 385
members.

 W3C puts together specifications for Web standards.
 Some common web standards are HTML, CSS, XML, SOAP, XQUERY, XPATH, XSLT, WSDL etc.

World Wide Web Coordinating Groups (Besides W3C)
There are many types of technologies which are used to support the World Wide Web and more are
being developed all the time. There are several groups involved in the development and coordination of
these technologies.

 IAB - Internet Architecture Board. Web site: IAB. The IAB websites states that "The IAB does not
aim to produce polished technical proposals on such topics. Rather, the intention is to stimulate
action by the IESG or within the IETF community that will lead to proposals that meet general
consensus."

 IANA - Internet Assigned Numbers Authority. Web site: IANA. They control the assignment of
internet addresses and domain names.

 IESG - Internet Engineering Steering Group. Web site: IESG. According to RFC 2418, the IESG
"has responsibility for developing and reviewing specifications intended as Internet Standards."

For more notes visit https://collegenote.pythonanywhere.com

http://www.iab.org/iab
http://www.iana.org/
http://www.ietf.org/iesg.html

4

 IETF - Internet Engineering Task Force. Web site: IETF. Their web site says "The Internet
Engineering Task Force (IETF) is a large open international community of network designers,
operators, vendors, and researchers concerned with the evolution of the Internet architecture
and the smooth operation of the Internet."

 InterNIC - Internet Network Information Center, the authority for allocating internet addresses.
Web site: InterNIC.

 IRTF - Internet Research Task Force. Web site: IRTF. Their web site states their mission is "To
promote research of importance to the evolution of the future Internet by creating focused,
long-term and small Research Groups working on topics related to Internet protocols,
applications, architecture and technology."

 ISOC - Internet Society, promotes internet policies. Web site: ISOC.
 ISTF - Internet Societal Task Force. Web site: ISTF. Their mission is "To assure the open

development, evolution and use of the Internet for the benefit of all people throughout the
world".

 W3C - World Wide Web Consortium sets standards for the web working with the IETF.W3C
 OASIS - Organization for the Advancement of Structured Information Standards. OASIS
 Internet2 Internet2 An Organization that supports internet related technologies including XML,

DHTML, JAVA and more.
 IRT - Internet Related Technologies.Website: Internet Related Technologies Their website states

"Internet2, led by over 180 U.S. universities working in partnership with industry and
government, is developing and deploying advanced network applications and technologies,
accelerating the creation of tomorrow's Internet."

 Graphic Communications Association A trade association that provides standards for the
printing and publishing industries.

Client-Server Model
The client–server model of computing is a distributed application structure that partitions tasks or
workloads between the providers of a resource or service, called servers, and service requesters,
called clients. Often clients and servers communicate over a computer network on separate hardware,
but both client and server may reside in the same system. A server host runs one or more server
programs which share their resources with clients.
Example: When a bank customer accesses online banking services with a web browser (the client), the
client initiates a request to the bank's web server. The customer's login credentials may be stored in
a database, and the web server accesses the database server as a client. An application server interprets
the returned data by applying the bank's business logic, and provides the output to the web server.
Finally, the web server returns the result to the client web browser for display.

For more notes visit https://collegenote.pythonanywhere.com

http://www.ietf.org/
http://www.internic.net/
http://www.irtf.org/
http://www.isoc.org/
http://www.istf.isoc.org/
http://www.w3.org/
http://www.oasis-open.org/
http://www.internet2.edu/
http://www.irt.org/
http://www.gca.org/

5

 Clients initiate communication sessions with servers which await incoming requests.
 Examples of computer applications that use the client–server model are Email, network

printing, and the World Wide Web.

Server types
 Proxy Servers: Proxy servers sit between a client program (typically a web browser) and an

external server (typically another server on the web) to filter requests, improve performance,
and share connections.

 Mail Servers: They involve getting and posting emails using protocols such as POP and IMAP for
receiving emails and SMTP for transferring emails.

 Web Servers: They hold the text and graphics for a specific web site which can be viewed by
web browsers. The web servers respond to the request for information made by the client. They
communicate with the clients via HTTP.

 File Servers: They are used to upload or download files and employ the FTP protocol.
 Telnet Servers: They enable users to log on to a remote computer and perform tasks as if they

are working on the remote computer itself.
 Database Servers: Database server is the term used to refer to the back-end system of a

database application using client/server architecture. The back-end, sometimes called a
database server, performs tasks such as data analysis, storage, data manipulation, archiving, and
other non-user specific tasks.

 Application Servers: Sometimes referred to as a type of middleware, application servers occupy

a large chunk of computing territory between database servers and the end user, and they often

connect the two.

 Communications server: Carrier-grade computing platform for communications networks.
 Name server or DNS
 Game server: a server that video game clients connect to in order to play online together.

Fig: Wikimedia Foundation servers as seen from the front (left) and rear (right)

Email protocols: SMTP vs POP3 vs IMAP

SMTP, POP3 and IMAP are TCP/IP protocols used for mail delivery. Each protocol is just a specific set of
communication rules between computers.

 SMTP: SMTP stands for Simple Mail Transfer Protocol. SMTP is used when email is delivered
from an email client, such as Outlook Express, to an email server or when email is delivered
from one email server to another. SMTP uses port 25.

 POP3: POP3 stands for Post Office Protocol. POP3 allows an email client to download an email
from an email server. The POP3 protocol is simple and does not offer many features except for
download. Its design assumes that the email client downloads all available email from the
server, deletes them from the server and then disconnects. POP3 normally uses port 110.

 IMAP: IMAP stands for Internet Message Access Protocol. IMAP shares many similar features
with POP3. It, too, is a protocol that an email client can use to download email from an email

For more notes visit https://collegenote.pythonanywhere.com

6

server. However, IMAP includes many more features than POP3. The IMAP protocol is designed
to let users keep their email on the server. IMAP requires more disk space on the server and
more CPU resources than POP3, as all emails are stored on the server. IMAP normally uses port
143.

Mailing Example:

1. Suppose you use SendMail as your email server to send an email to bill@microsoft.com.You
click Send in your email client, say, Outlook.

2. Outlook delivers the email to SendMail using the SMTP protocol.
3. SendMail delivers the email to Microsoft's mail server, mail.microsoft.com, using SMTP.
4. Bill's Mozilla Mail client downloads the email from mail.microsoft.com to his laptop using the

POP3 protocol (or IMAP).

DNS (Domain Name System)

 The Domain Name System (DNS) is a hierarchical distributed naming system for computers,
services, or any resource connected to the Internet or a private network.

 It translates easily memorized domain names to the numerical IP addresses needed for the
purpose of locating computer services and devices worldwide.

 Every computer on the Internet can have both a domain name and an IP address, and when you
use a domain name, the computers known as DNS servers translate that name to the
corresponding IP address.

 The names of the domains describe organizational and geographic relations. They indicate what
country the network connection is in, what kind of organization owns it, and sometimes further
details.

Domain Naming:

 Non-geographic domains: There are many top-level domain types that are non-geographical.
Some of them are:

 com – for commercial organizations (i.e. Business)
 net – for network resources e.g. ISPs

For more notes visit https://collegenote.pythonanywhere.com

7

 gov – for government organizations (Non-military)
 edu – for educational organizations (Universities, Secondary schools, etc)
 mil – for military (Army, Navy, Air-force)
 org – Other organizations
 Geographic domains: The geographically based top-level domain types use two-letter

country destinations. E.g. au – Australia, jp – Japan, us – United States

This graphic maps a combination of generic top-level domains (gTLDs) and country code top-level

domains (ccTLDs) in order to provide an indication of the total number of domain registrations in every
country worldwide.

1.2 Review of HTML

What exactly web page is?
A web page is a document composed basically of text and special codes called tags of some markup
languages which make the display of the WWW possible.

 Besides textual information, a web document may also contain images, sound, animation, video
and also links to other pages anywhere on the web.

 A web site is a collection of web pages maintained by a company, university, government or any
individual.

 A home page is a web page which opens first while opening any web site.
To create a web page, we need only a text editor and a browser.

What is a Markup Language then?
Markup language is a modern system for annotating a document in a way that is syntactically
distinguishable from the text. The idea came from the "marking up" of paper manuscripts, i.e., the
revision instructions by editors, traditionally written with a blue pencil on authors’ manuscripts.
In digital media this "blue pencil instruction text" was replaced by tags, that is, instructions are
expressed directly by tags or "instruction text encapsulated by tags". A markup language is not a

For more notes visit https://collegenote.pythonanywhere.com

http://en.wikipedia.org/wiki/GTLD
http://en.wikipedia.org/wiki/Country_code_top-level_domain
http://en.wikipedia.org/wiki/Annotation
http://en.wikipedia.org/wiki/Document
http://en.wikipedia.org/wiki/Syntax_(logic)
http://en.wikipedia.org/wiki/Syntax_(logic)
http://en.wikipedia.org/wiki/Manuscript
http://en.wikipedia.org/wiki/Digital_media
http://en.wikipedia.org/wiki/HTML_element

8

programming language since it does not contain constructs (loops etc.) which are must for the general
purpose programming language (C, C# etc).

Examples: Typesetting instructions such as those found in troff, TeX and LaTeX, or structural markers
such as XML tags. Markup instructs the software displaying the text to carry out appropriate actions.
Some markup languages, such as the widely used HTML, have pre-defined presentation semantics,
meaning that their specification prescribes how the structured data are to be presented; others, such as
XML, do not.

What is HTML?
HyperText Markup Language (HTML), one of widely used document formats of the WWW, is an instance
of SGML: Standard Generalized Markup Language (though, strictly, it does not comply with all the rules
of SGML), and follows many of the markup conventions used in the publishing industry.

In 1989, physicist Sir Tim Berners-Lee wrote a memo proposing an Internet based hypertext system,
then specified HTML and wrote the browser and server software in the last part of 1990. The first
publicly available description of HTML was a document called "HTML Tags", first mentioned on the
Internet by Berners-Lee in late 1991. It describes 18 elements comprising the initial, relatively simple
design of HTML. Eleven of these elements still exist in HTML 4.

 HTML is the standard markup language used to create web pages.
 A markup language is a set of markup tags
 The tags describe document content
 HTML documents contain HTML tags and plain text. HTML documents are also called web pages

HTML Tags
 HTML markup tags are usually called HTML tags.
 HTML tags are keywords (tag names) surrounded by angle brackets like <html>
 HTML tags normally come in pairs like <p> and </p>
 The first tag in a pair is the start tag/opening tag, the second tag is the end tag/closing tag
 The end tag is written like the start tag, with a slash before the tag name : <tagname>content

</tagname>
 HTML tags are not case sensitive: <P> means the same as <p>

Html document structure
An HTML document is structured with two main elements: HEAD and BODY

For more notes visit https://collegenote.pythonanywhere.com

http://en.wikipedia.org/wiki/Troff
http://en.wikipedia.org/wiki/TeX
http://en.wikipedia.org/wiki/LaTeX
http://en.wikipedia.org/wiki/Extensible_Markup_Language
http://en.wikipedia.org/wiki/HyperText_Markup_Language
http://en.wikipedia.org/wiki/Presentation_semantics
http://en.wikipedia.org/wiki/Hypertext
http://en.wikipedia.org/wiki/HyperText_Markup_Language
http://en.wikipedia.org/wiki/WWW
http://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language
http://en.wikipedia.org/wiki/Tim_Berners-Lee

9

HTML Versions

Guys, let’s explore different html element tags and their usage:

What is this <!DOCTYPE> thing at the top?

 The <!DOCTYPE> declaration helps the browser to display a web page correctly.
 There are many different documents on the web, and a browser can only display an HTML page

100% correctly if it knows the HTML version and type used.
 Common Declarations

 HTML5: <!DOCTYPE html>
 HTML 4.01: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN“

"http://www.w3.org/TR/html4/loose.dtd"> XHTML 1.0: <!DOCTYPE html PUBLIC "-
//W3C//DTD XHTML 1.0 Transitional//EN”
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

HTML Elements

 An HTML element is everything from the start tag to the end tag.
 Example: <p>This is a paragraph</p>, <h1>Biggy Heading</h1>

Hey!

 Some HTML elements have empty content: <input>
 Empty elements are closed in the start tag:

 Most HTML elements can have attributes: <input type=”text”>, type is attribute here

Nested Html Elements

 Most HTML elements can be nested (can contain other HTML elements).
 HTML documents consist of nested HTML elements.
 Example:

<div id="demo">
 <div id="center">
 <p id="paragraph">
 </p>
 </div>
 </div>

For more notes visit https://collegenote.pythonanywhere.com

10

Html Attributes
 Attributes provide additional information about an element and are always specified in the

start tag
 Attributes come in name/value pairs like: name="value"
 Example

 HTML links are defined with the <a> tag. The link address is specified in the href
attribute:

 Go to google
 Other attributes can be: class, id, title, style etc.

Html <head> element

 The <head> element is a container for all the head elements. Elements inside <head> can
include scripts, instruct the browser where to find style sheets, provide meta information, and
more.

 The following tags can be added to the head section: <title>, <style>, <meta>, <link>, <script>,
<noscript> and <base>.

 Example:
<!DOCTYPE html>
<html>
<head>
 <title>Title of the document</title>

<base href=“http://www.example.com/“ target="_blank“ >
<meta charset="UTF-8">
<meta name="description" content="Free Web tutorials">
<meta name="keywords" content="HTML,CSS,XML,JavaScript">
<meta name="author" content="Hege Refsnes">

 <meta http-equiv="refresh" content="30">
 <script type=”text/javascript” src=”../scripts/custom.js”>
 <style rel=”stylesheet” type=”text/css” href=”../content/cus.css”>
</head>
<body>
 The content of the document......
</body>
</html>

 <meta> tag
 The <meta> tag provides metadata (data about data) about the HTML document.

Metadata will not be displayed on the page, but will be machine parsable.
 Meta elements are typically used to specify page description, keywords, author of the

document, last modified, and other metadata.
 The metadata can be used by browsers (how to display content or reload page), search

engines (keywords), or other web services.
Html Heading Tags

 The <h1> to <h6> tags are used to define HTML headings.
 <h1> defines the most important heading. <h6> defines the least important heading.

<body>

<h1>This is heading 1</h1>
<h2>This is heading 2</h2>
<h3>This is heading 3</h3>

For more notes visit https://collegenote.pythonanywhere.com

http://www.example.com/

11

<h4>This is heading 4</h4>
<h5>This is heading 5</h5>
<h6>This is heading 6</h6>

</body>
Html Formatting

 HTML uses tags like and <i> for formatting output, like bold or italic text.
 Examples: <p>This text is bold</p>

Html text formatting tags

 Defines bold text
 Defines emphasized text
 <i> Italic
 <small> Defines smaller text
 Defines important text
 <sub> Defines subscripted text
 <sup> Defines superscripted text
 <ins> Defines inserted text
 Defines deleted text
 <mark>Defines marked/highlighted text

Html comments

 syntax: <!-- Write your comments here -->
 Hey! There is an exclamation point (!) in the opening tag, but not in the closing tag.
 Comments are not displayed by the browser
 With comments you can place notifications and reminders in your HTML.
 Conditional Comments: Nothing more than simple HTML comments that IE (up to version 9)

happens to take a peep at, are used to throw a chunk of HTML at these browsers and only these
browsers.
<link href="everything.css" rel="stylesheet">
<!--[if IE]><link href="stupidie.css" rel="stylesheet"><![endif]-->
Hey! Everything between <!--[if IE]> and <![endif]--> will be picked up by Internet Explorer.
We can also target specific versions of Internet Explorer: <!--[if IE 6>…, <!--[if IE 7>…,

<!--[if IE gte 8]>…, <!--[if IE 9>…

HTML Hyperlinks
 The HTML <a> tag defines a hyperlink.
 A hyperlink (or link) is a word, group of words, or image that you can click on to jump to another

document.
 The most important attribute of the <a> element is the href attribute, which indicates the link's

destination.
 Link Targets

 We use it to control link-open behavior. This example will open yahoo in a new window:

HTML "Computer Output" Tags
<code> Defines computer code text
<kbd> Defines keyboard text
<samp> Defines sample computer code
<var> Defines a variable
<pre> Defines preformatted text
HTML Citations, Quotations, and Definition Tags
<abbr> Defines an abbreviation or acronym
<address> Defines contact information
<bdo> Defines the text direction
<blockquote> Defines a section that is quoted from
another source
<q> Defines an inline (short) quotation
<cite> Defines the title of a work
<dfn>Defines a definition term

For more notes visit https://collegenote.pythonanywhere.com

http://www.w3schools.com/tags/tag_b.asp
http://www.w3schools.com/tags/tag_em.asp
http://www.w3schools.com/tags/tag_em.asp
http://www.w3schools.com/tags/tag_em.asp
http://www.w3schools.com/tags/tag_i.asp
http://www.w3schools.com/tags/tag_i.asp
http://www.w3schools.com/tags/tag_i.asp
http://www.w3schools.com/tags/tag_small.asp
http://www.w3schools.com/tags/tag_strong.asp
http://www.w3schools.com/tags/tag_sub.asp
http://www.w3schools.com/tags/tag_sup.asp
http://www.w3schools.com/tags/tag_ins.asp
http://www.w3schools.com/tags/tag_del.asp
http://www.w3schools.com/tags/tag_mark.asp
http://www.w3schools.com/tags/tag_code.asp
http://www.w3schools.com/tags/tag_kbd.asp
http://www.w3schools.com/tags/tag_kbd.asp
http://www.w3schools.com/tags/tag_kbd.asp
http://www.w3schools.com/tags/tag_samp.asp
http://www.w3schools.com/tags/tag_samp.asp
http://www.w3schools.com/tags/tag_samp.asp
http://www.w3schools.com/tags/tag_var.asp
http://www.w3schools.com/tags/tag_var.asp
http://www.w3schools.com/tags/tag_var.asp
http://www.w3schools.com/tags/tag_pre.asp
http://www.w3schools.com/tags/tag_abbr.asp
http://www.w3schools.com/tags/tag_abbr.asp
http://www.w3schools.com/tags/tag_abbr.asp
http://www.w3schools.com/tags/tag_address.asp
http://www.w3schools.com/tags/tag_bdo.asp
http://www.w3schools.com/tags/tag_bdo.asp
http://www.w3schools.com/tags/tag_bdo.asp
http://www.w3schools.com/tags/tag_blockquote.asp
http://www.w3schools.com/tags/tag_blockquote.asp
http://www.w3schools.com/tags/tag_blockquote.asp
http://www.w3schools.com/tags/tag_q.asp
http://www.w3schools.com/tags/tag_cite.asp
http://www.w3schools.com/tags/tag_dfn.asp
http://www.w3schools.com/tags/tag_dfn.asp
http://www.w3schools.com/tags/tag_dfn.asp

12

 Predefined targets are:
 _blank loads the page into a new browser window.
 _self loads the page into the current window.
 _parent loads the page into the frame that is superior to the frame the

hyperlink is in.
 _top cancels all frames, and loads in full browser window.

 Text Links
 The HTML code for a link is simple. It looks like this: Link text
 Example: Login to FB

 Use of base path:
<!DOCTYPE html>
 <html>
 <head>
 <title>Hyperlink Example</title>
 <base href= "http://www.tutorialspoint.com/">
 </head>
 <body>
 <p>Click following link</p>
 HTML Tutorial
 </body>
</html>

 Linking to page section using name or id attribute
o First create a link to the place where you want to reach with-in a webpage

and name it using <a...> tag as follows: <h1>HTML Text Links </h1>

o Second step is to create a hyperlink to link the document and place where
you want to reach: Go to Top

 Setting link colors (In practice this is done by CSS styles which we will cover later)
o We can set colors of your links, active links and visited links

using link, alink and vlink attributes of <body> tag.
o Example:

<!DOCTYPE html>
<html>

<head>
<title>Hyperlink Example</title>
<base href="http://www.tutorialspoint.com/">

</head>
<body alink="#54A250" link="#040404" vlink="#F40633">

<p>Click following link</p>
HTML Tutorial

</body>
</html>

 Image links
It's simple to use an image as hyperlink. We just need to use an image inside hyperlink at the
place of text as shown below:

For more notes visit https://collegenote.pythonanywhere.com

13

 HTML Email Links
While using <a> tag as an email tag, you will use mailto:email address along with href attribute.
Following is the syntax of using mailto instead of using http.

Send Email

Now if a user clicks this link, it launches one Email Client (e.g. Outlook) installed in your
computer.

Html Blocks

 All the HTML elements can be categorized into two categories (a) Block Level Elements (b) Inline
Elements

 Block Elements
Block elements appear on the screen as if they have a line break before and after them. For
example the <p>, <h1>, <h2>, <h3>, <h4>, <h5>, <h6>, , , <dl>, <pre>, <hr />,
<blockquote>, and <address> elements are all block level elements. They all start on their own
new line, and anything that follows them appears on its own new line.

 Inline Elements
Inline elements, on the other hand, can appear within sentences and do not have to appear on a
new line of their own. The , <i>, <u>, , , <sup>, <sub>, <big>, <small>, ,
<ins>, , <code>, <cite>, <dfn>, <kbd>, and <var> elements are all inline elements.

Grouping HTML Elements

 There are two important tags which we use very frequently to group various other HTML tags (i)
<div> tag and (ii) tag

 The <div> tag
Important block level tag which plays a big role in grouping various other HTML tags and
applying CSS on them. Even, <div> tag can be used to create webpage layout where we define
different parts (Left, Right, Top etc) of the page. This tag does not provide any visual change on
the block but this has more meaning when it is used with CSS.
Example:
<body>
 <!-- First group of tags -->
 <div style="color: red">
 <h4>This is first group</h4>
 <p>Following is a list of vegetables</p>

 Beetroot
 Ginger
 Potato
 Radish

 </div>

<!-- Second group of tags -->
 <div style="color:green">
 <h4>This is second group</h4>
 <p>Following is a list of fruits</p>

For more notes visit https://collegenote.pythonanywhere.com

14

 Apple
 Banana
 Mango
 Strawberry

 </div>
 </body>

 The tag
The HTML is an inline element and it can be used to group inline-elements in an HTML
document. This tag also does not provide any visual change on the block but has more meaning
when it is used with CSS.
 The difference between the tag and the <div> tag is that the tag is used with

inline elements where as the <div> tag is used with block-level elements.
 Example:

<p>This is red and this is
green </p>

Html Lists
The most common HTML lists are ordered and unordered lists:

HTML Unordered and ordered lists

 Unordered list starts with tag.
 An ordered list starts with the tag.
 Both cases: Each list item starts with the tag.
 Example:

Coffee
Milk

Coffee
Milk

HTML Description Lists
 A description list is a list of terms/names, with a description of each term/name.
 The <dl> tag defines a description list.
 The <dl> tag is used in conjunction with <dt> (defines terms/names) and <dd> (describes each

term/name)
 Ex:

<dl>
<dt>Coffee</dt>
<dd>- black hot drink</dd>
<dt>Milk</dt>
<dd>- white cold drink</dd>
</dl>

Html Images
 In HTML, images are defined with the tag.
 The tag is empty, which means that it contains attributes only, and has no closing tag.

For more notes visit https://collegenote.pythonanywhere.com

15

 To display an image on a page, you need to use the src (Source) attribute: URL of the image you
want to display and alt (Alternate text): alternate text for an image, if the image cannot be
loaded.

 Height and width (in pixels) can also be set.
 Example:

HTML Character Entities

 Some characters have a special meaning in HTML, like the less than sign (<) that defines the start
of an HTML tag and therefore should be avoided in the plain text. If we want the browser to
actually display these characters we must insert character entities in the HTML source.

 A character entity has three parts:
 An ampersand (&),
 An entity name or # and
 An entity number, and finally a semicolon (;).

 To display a less than sign in an HTML document we must write: < or <
 Hey! Entities are case sensitive.
 ASCII Entities with Entity Names:

Html background

 HTML provides you following two ways to decorate webpage background.
 Html Background with Colors

<!-- Format 1 - Use color name -->

 <table bgcolor="lime" >
 <!-- Format 2 - Use hex value -->
 <table bgcolor="#f1f1f1" >
 <!-- Format 3 - Use color value in RGB terms -->
 <table bgcolor="rgb(0,0,120)" >

 Html Background with Images
 <!-- Set table background -->
 <table background="/images/html.gif" width="100%” height="100">

Html Tables
The HTML tables allow web authors to arrange data like text, images, links, other tables, etc. into rows
and columns of cells. The HTML tables are created using the <table> tag in which the <tr> tag is used to
create table rows and <td> tag is used to create data cells.
Example:

For more notes visit https://collegenote.pythonanywhere.com

16

<!DOCTYPE html>
 <html>
 <head>
 <title>HTML Tables</title>
 </head>
 <body>
 <table border="1">
 <tr>
 <td>Row 1, Column 1</td>
 <td>Row 1, Column 2</td>
 </tr>
 <tr>
 <td>Row 2, Column 1</td>
 <td>Row 2, Column 2</td>
 </tr>
 </table>
 </body>
 </html>
Table Heading

 Defined using <th> tag. This tag could be used to replace <td> tag. Normally used for top row
representing column names.

 <table border="1">
 <tr>
 <th>Name</th>
 <th>Salary</th>
 </tr>
 <tr>
 <td>Ramesh Raman</td>
 <td>5000</td>
 </tr>
 …
 </table>

Cellpadding and Cellspacing Attributes
 Used to adjust the white space in table cells.
 cellspacing attribute: specifies the space between the cells
 Cellpadding: represents the distance between cell borders and its content.
 Example: <table border="1" cellpadding="5" cellspacing="5">… </table>

Colspan and Rowspan Attributes

 colspan: used to merge two or more columns into a single column.
 rowspan: used to merge two or more rows.
 Example:

…
<tr>
 <td rowspan="2">Row 1 Cell 1</td>
 <td>Row 1 Cell 2</td>
 <td>Row 1 Cell 3</td>

For more notes visit https://collegenote.pythonanywhere.com

17

</tr>
<tr>
 <td>Row 2 Cell 2</td>
 <td>Row 2 Cell 3</td>
</tr>
<tr>
 <td colspan="3">Row 3 Cell 1</td>
</tr>
…

Tables Backgrounds: Two ways
 bgcolor attribute - background color for whole table or just for one cell.
 background attribute - background image for whole table or just for one cell.
 Also bordercolor attribute can be used to set border colors.
 Example:

<table border="1" bordercolor="green" bgcolor="yellow">
<table border="1" bordercolor="green" background="/images/test.png">

Table Height, Width, Caption

 Table width or height can be specified in terms of pixels or in terms of percentage of available
screen area.

 Example:
<table border="1" width="400" height="150">
<table border="1" width="100%">
 <caption>This is the caption</caption>
 …
</table>

Table Header, Body, and Footer
 Tables can be divided into three portions: a header, a body, and a foot
 <thead> - to create a separate table header.
 <tbody> - to indicate the main body of the table.
 <tfoot> - to create a separate table footer.
 A table may contain several <tbody> elements to indicate different pages or groups of data. But

it is notable that <thead> and <tfoot> tags should appear before <tbody>
 Example:

<table border="1" width="100%">
 <thead>
 <tr> <td colspan="4">This is the head of the table</td> </tr>
 </thead>
 <tfoot>
 <tr>
 <td colspan="4">This is the foot of the table</td>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td>Cell 1</td>
 <td>Cell 2</td>
 <td>Cell 3</td>

For more notes visit https://collegenote.pythonanywhere.com

18

 <td>Cell 4</td>
 </tr>
 </tbody>
</table>

Using font attributes

… … …

Colors: Can be given as: azure, blue, black, cyan, fuchsia, grey, green, lime, magenta, maroon,
navy, olive, red, silver, white, yellow, etc.

 Colors: Can also be given as:
 #FFFFFF – represents white
 #000000 – represents black
 #FFF000 – represents yellow
 and so on for more combination of colors.
 Size: Can be from 1 to 7.
Example:

<body>
 Times New Roman

 Verdana

 Comic Sans MS

 WildWest

 Bedrock

</body>

Alternate font faces:

Horizontal line: <hr> Tag
 The <hr> tag adds a horizontal line.
 Color can be given to the horizontal line as

 <hr color = “red”>sIt is empty tag.

Html Frames
 HTML frames are used to divide browser window into multiple sections where each section can load

a separate HTML document. A collection of frames in the browser window is known as a frameset.
The window is divided into frames in a similar way the tables are organized: into rows and columns.

 It’s never recommended to use frames since:
 Some smaller devices cannot cope with frames often because their screen is not big enough

to be divided up.
 Sometimes your page will be displayed differently on different computers due to different

screen resolution.
 The browser's back button might not work as the user hopes.

For more notes visit https://collegenote.pythonanywhere.com

19

 There are still few browsers that do not support frame technology.
Example:

 <!DOCTYPE html>
 <html>
 <head>
 <title>HTML Frames</title>
 </head>
 <frameset rows="10%,80%,10%">
 <frame name="top" src="/html/top_frame.htm" />
 <frame name="main" src="/html/main_frame.htm" />
 <frame name="bottom" src="/html/bottom_frame.htm" />
 <noframes>
 <body> Your browser does not support frames. </body>
 </noframes>
 </frameset>

</html>

Inline Iframes (Inline Frames)
 We can define an inline frame with HTML tag <iframe>. It can appear anywhere in our

document. The <iframe> tag defines a rectangular region within the document in which the
browser can display a separate document, including scrollbars and borders.

 The src attribute is used to specify the URL of the document that occupies the inline frame.
Example:

<body>
 <p>Document content goes here...</p>
 <iframe src="/html/menu.htm" width="555" height="200">

Sorry your browser does not support inline frames.
</iframe>

 <p>Document content also go here...</p>
</body>

Html Forms
 HTML Forms are required when you want to collect some data from the site visitor. For example

during user registration you would like to collect information such as name, email address,
credit card, etc.

 A form will take input from the site visitor and then will post it to a back-end application such as
CGI, ASP Script or PHP script etc. The back-end application will perform required processing on
the passed data based on defined business logic inside the application.

 There are various form elements available like text fields, textarea fields, drop-down menus,
radio buttons, checkboxes, etc.

 The HTML <form> tag is used to create an HTML form and it has following syntax:
 <form action="Script URL" method="GET|POST">

 Define <frameset> instead of <body>.
 <frameset> tag defines how to divide the window into frames.

 rows: attribute defines horizontal frames
 cols: defines vertical frames.
 Each frame is indicated by <frame> tag and it defines which HTML document

shall open into the frame using src attribute.

For more notes visit https://collegenote.pythonanywhere.com

20

 form elements like input, textarea etc.
 </form>

Form attributes

 action: Backend script which is ready to process passed data.
 method: Method to be used to upload data. The most frequently used are GET and POST

methods.
 target: Specify the target window or frame where the result of the script will be displayed. It

takes values like _blank, _self, _parent etc.
 enctype: You can use the enctype attribute to specify how the browser encodes the data before

it sends it to the server. Possible values are:
 application/x-www-form-urlencoded - This is the standard method most forms

use in simple scenarios.
 mutlipart/form-data - This is used when you want to upload binary data in the

form of files like image, word file etc.
Form controls

 There are different types of form controls that you can use to collect data using HTML form:
 Text Input Controls

 Single-line text input controls - <input type=“text”>
 List of attributes for <input> tag; type: Type of input control, name:

Name to the control which is sent to the server . Value: initial value,
size: width in characters. maxlength: maximum number of characters a
user can enter into the text box.

 Password input controls - <input type=“password”>
 Multi-line text input controls - <textarea>.

 Checkboxes Controls
 Checkboxes are used when more than one option is required to be selected.

They are also created using HTML <input> tag but type attribute is set
to checkbox.

 Attributes: value: The value that will be used if the checkbox is selected,
checked: Set to checked if you want to select it by default.

 Radio Box Controls
 Radio buttons are used when out of many options, just one option is required to

be selected. They are also created using HTML <input> tag but type attribute is
set to radio.

 Select Box (Dropdown Box) Controls
 A select box, also called drop down box which provides option to list down

various options in the form of drop down list, from where a user can select one
or more options.

 <select>: Attributes: Name to the control which is sent to the server to be
recognized and get the value, size: This can be used to present a scrolling list
box, multiple: If set to "multiple" then allows a user to select multiple items
from the menu.

 <option>: value: The value that will be used if an option in the select box box is
selected, selected: Specifies that this option should be the initially selected
value when the page loads, label: An alternative way of labeling options

 File Select (Upload) boxes

For more notes visit https://collegenote.pythonanywhere.com

21

 If you want to allow a user to upload a file to your web site, you will need to use
a file upload box, also known as a file select box. This is also created using the
<input> element but type attribute is set to file.

 Attribute: accept-Specifies the types of files that the server accepts.
 Clickable Buttons

 We can also create a clickable button using <input> tag by setting its type
attribute to one of following values:

 submit- creates a button that automatically submits a form.
 reset- creates a button that automatically resets form controls to their

initial values.
 button- creates a button that is used to trigger a client-side script when

the user clicks.
 image- creates a clickable button but we can use an image as

background of the button.
 Hidden From Controls

 Hidden form controls are used to hide data inside the page which later on can
be pushed to the server. For This control hides inside the code and does not
appear on the actual page.

Example:
<form action=”” method=”POST”>

<div>First name: <input type="text" name="first_name" /> </div>
<div>Last name: <input type="text" name="last_name" /> </div>
<div>Last name: <input type=“password" name=“pwd" /> </div>
<div><textarea rows="5" cols="50" name="description"></div>
<input type="checkbox" name="maths" value=“on"> Maths
<input type="checkbox" name="physics" value="on"> Physics
<input type="radio" name="subject" value="maths"> Maths
<input type="radio" name="subject" value="physics"> Physics
<select name="dropdown">

<option value="Maths" selected>Maths</option>
<option value="Physics">Physics</option>

</select>
<input type="file" name="fileupload" accept="audio/*|video/*|image/*|MIME_type"
/>
<input type="submit" name="submit" value="Submit" />
<input type="reset" name="reset" value="Reset" />
<input type="button" name="ok" value="OK" />
<input type="image" name="imagebutton" src="/html/images/logo.png" />
<input type="hidden" name="pagename" value="10" />

</form>

HTML Marquee
An HTML marquee is a scrolling piece of text displayed either horizontally across or vertically down your
webpage depending on the settings. This is created by using HTML <marquees> tag.

 Note: The HTML <marquee> tag may not be supported by various browsers so its not
recommended to rely on this tag, instead you can use JavaScript and CSS to create such
effects.

 Example:

For more notes visit https://collegenote.pythonanywhere.com

22

<body>
 <marquee>This is basic example of marquee</marquee>
 <marquee width="50%">This example will take only 50% width</marquee>
 <marquee direction="right">This text will scroll from left to right</marquee>
 <marquee direction="up">This text will scroll from bottom to up</marquee>
</body>

Working with dynamic image
Adding dynamic image (such as AVI files) and sounds (such as MID files and WAV files) to the web page
makes it more attractive.

 Adding dynamic image: For adding moving image, we have to use the tag following the
dynsrc (dynamic source) of the file as:

 Here, loop=“infinite” plays the file continuously whereas if you set loop=“2”, then it plays the

file 2 times only.
 Adding background sound: For adding background sound to your web page, do as follows:

 <bgsound src = “path” loop = “infinite”>
Sound files can be searched within the computer by typing *.mid, *.wav, etc. The hardware
requirements to get ssound facility are sound card (it may be in-built) and sound box.

Extra Examples:
How to draw a border with a caption around a form. (Groupbox)
<!DOCTYPE html>
<html>
 <head>
 <title>GroupBox Demosntration</title>
 </head>
<body>

<fieldset>
<legend>
 Health information
</legend>
<form>

Height <input type="text" size="3">
Weight <input type="text" size="3">

</form>
</fieldset>
<p>If there is no border around the input form, your browser is too old.</p>

</body>
</html>

Create an image map, with clickable regions. Each of the regions is a hyperlink.
<!--image_regions_hyperlink.htm-->
<html>

<body>
<p>
 Click on head to link to rose, left leg to link to ace and right leg to link to test.htm

For more notes visit https://collegenote.pythonanywhere.com

23

</p>

<map name="link">

<area shape="rect" coords="75,0,125,40" alt="Link Rose” href="rose.gif">
<area shape="circle" coords="25,125,25" alt="Link Ace“ href="ace.gif">
<area shape="circle" coords="175,125,25" alt="Link test.htm" href="test.htm">

</map>
<p>
</body>

</html>

Redirect a user if your site address has changed.

<!--meta_redirect.htm-->
<html>

<head>
<meta http-equiv="Refresh" content="5;url=index.htm" >

</head>
<body>
<p>Sorry! We have moved! The new URL is: http://www.xyz.com.np
</p>
<p>You will be redirected to the new address in five seconds.</p>
<p>If you see this message for more than 5 seconds, please click on the link above!</p>
</body>

</html>

Adding image as marquee
<!--marquee_single_picture.htm-->
<html>

<body>
<marquee direction="right"></marquee>
<marquee behavior="scrolling" direction="down"></marquee>

</body>
</html>

Marquee of pictures
<html>
<head>

<title>Moving Pictures</title>
</head>
<body bgcolor="silver" text="maroon">

<center><h1>Creating marquee with pictures</h1></center>

<marquee>

For more notes visit https://collegenote.pythonanywhere.com

24

</marquee>
</body>
</html>

Putting background sound, calling a dynamic image and marquee
<html>

<head>
<title>Moving Pictures</title>

</head>
<body bgcolor="sky blue">

<bgsound src="grden_01.mid" loop="infinite">
<center>

<u>Sphere</u>

</center>

<marquee bgcolor="yellow">The ball is moving.</marquee>

</body>
</html>

For more notes visit https://collegenote.pythonanywhere.com

25

Cascading Style Sheets (CSS)

Applying CSS
There are three ways to apply CSS to HTML: In-line, internal (Embedded), and external.

In-line
In-line styles are injected straight into the HTML tags using the style attribute.
They look something like this:

<p style="color: red">text</p>

This will make that specific paragraph red.
But, if you remember, the best-practice approach is that the HTML should be a standalone, presentation
free document, and so in-line styles should be avoided wherever possible.

Internal
Embedded, or internal, styles are used for the whole page. Inside the head element, the style tags
surround all of the styles for the page.

<!DOCTYPE html>
<html>
<head>
<title>CSS Example</title>
<style>

 p {
 color: red;
 }

 a {
 color: blue;
 }

</style>
...

This will make all of the paragraphs in the page red and all of the links blue.
Although preferable to soiling our HTML with inline presentation, it is similarly usually preferable to
keep the HTML and the CSS files separate, and so we are left with our savior, a third category.

External
External styles are used for the whole, multiple-page website. There is a separate CSS file with
extension .css, which will simply look something like:

/*style.css */
p {
 color: red;
}

a {
 color: blue;
}

For more notes visit https://collegenote.pythonanywhere.com

http://www.htmldog.com/reference/htmltags/head/
http://www.htmldog.com/reference/htmltags/style/

26

If this file is saved as “style.css” in the same directory as your HTML page then it can be linked to in the
HTML like this:

<!DOCTYPE html>
<html>
<head>
 <title>CSS Example</title>
 <link rel="stylesheet" href="style.css">
...

Apply!
It would be a good idea to try out the code as we go along, so start a fresh new file with your text-editor
and save the blank document as “style.css” in the same directory as your HTML file.

Selectors, Properties, and Values
Whereas HTML has tags, CSS has selectors. Selectors are the names given to styles in internal and
external style sheets. For now, we will be concentrating on HTML selectors, which are simply the names
of HTML tags and are used to change the style of a specific type of element.

For each selector there are “properties” inside curly brackets, which simply take the form of words such
as color, font-weight or background-color. A value is given to the property following a colon (NOT an
“equals” sign) and semi-colons separate the properties.

body {
 font-size: 14px;
 color: navy;
}

This will apply the given values to the font-size and color properties to the body selector. So basically,
when this is applied to an HTML document, text between the body tags (which is the content of the
whole window) will be 14 pixels in size and navy in color.

Lengths and Percentages
There are many property-specific units for values used in CSS, but there are some general units that are
used by a number of properties and it is worth familiarizing yourself with these before continuing.

px (such as font-size: 12px) is the unit for pixels.
em (such as font-size: 2em) is the unit for the calculated size of a font. So “2em”, for example, is two
times the current font size.
pt (such as font-size: 12pt) is the unit for points, for measurements typically in printed media.
% (such as width: 80%) is the unit for… wait for it… percentages.
Other units include pc (picas), cm (centimeters), mm (millimeters) and in (inches).

Hey! When a value is zero, you do not need to state a unit. For example, if you wanted to specify no
border, it would be border: 0.

Hey! “px” in this case, doesn’t actually necessarily mean pixels - the little squares that make up a
computer’s display - all of the time. Modern browsers allow users to zoom in and out of a page so that,
even if you specify font-size: 12px, or height: 200px, for example, although these will be the genuine

For more notes visit https://collegenote.pythonanywhere.com

http://www.htmldog.com/reference/cssproperties/color/
http://www.htmldog.com/reference/cssproperties/font-weight/
http://www.htmldog.com/reference/cssproperties/background-color/
http://www.htmldog.com/reference/cssproperties/font-size/
http://www.htmldog.com/reference/cssproperties/color/

27

specified size on a non-zoomed browser, they will still increase and decrease in size with the user’s
preference.

Colors
CSS brings 16,777,216 colors to your disposal. They can take the form of a name, an RGB
(red/green/blue) value or a hex code.
The following values, to specify full-on as red-as-red-can-be, all produce the same result:

 red

 rgb(255,0,0)

 rgb(100%,0%,0%)

 #ff0000

 #f00

Predefined color names include aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive,
orange, purple, red, silver, teal, white, and yellow. transparent is also a valid value.

Hey! With the possible exception of black and white, color names have limited use in modern, well
designed web sites because they are so specific and limiting.

The three values in the RGB value are from 0 to 255, 0 being the lowest level (no red, for example), 255
being the highest level (full red, for example). These values can also be a percentage.

Hexadecimal (previously and more accurately known as “sexadecimal”) is a base-16 number system can
also be used as color parameter. The hex number is prefixed with a hash character (#) and can be three
or six digits in length. Basically, the three-digit version is a compressed version of the six-digit
(#ff0000 becomes #f00, #cc9966 becomes #c96, etc.). The three-digit version is easier to decipher (the
first digit, like the first value in RGB, is red, the second green and the third blue) but the six-digit version
gives you more control over the exact color.

Hey! CSS3, the latest version of CSS, also allows you to define HSL colors - hue, saturation and lightness.

color and background-color
Colors can be applied by using color and background-color (note that this must be the American English
“color” and not “colour”).
A blue background and yellow text could look like this:

h1 {
 color: yellow;
 background-color: blue;
}

These colors might be a little too harsh, so you could change the code of your CSS file for slightly
different shades:

body {
 font-size: 14px;
 color: navy;
}

For more notes visit https://collegenote.pythonanywhere.com

http://www.htmldog.com/reference/cssproperties/color/
http://www.htmldog.com/reference/cssproperties/background-color/

28

h1 {
 color: #ffc;
 background-color: #009;
}

Save the CSS file and refresh your browser. You will see the colors of the first heading (the h1 element)
have changed to yellow and blue. You can apply the color and background-color properties to most
HTML elements, including body, which will change the colors of the page and everything in it.

Text
You can alter the size and shape of the text on a web page with a range of properties.

font-family
This is the font itself, such as Times New Roman, Arial, or Verdana.

The user’s browser has to be able to find the font you specify, which, in most cases, means it needs to
be on their computer so there is little point in using obscure fonts that are only sitting
on your computer. There are a select few “safe” fonts (the most commonly used are Arial, Verdana and
Times New Roman), but you can specify more than one font, separated by commas. The purpose of this
is that if the user does not have the first font you specify, the browser will go through the list until it
finds one it does have. This is useful because different computers sometimes have different fonts
installed. So font-family: arial, helvetica, serif, will look for the Arial font first and, if the browser can’t
find it, it will search for Helvetica, and then a common serif font.

Hey! If the name of a font is more than one word, it should be put in quotation marks, such as font-
family: "Times New Roman".

font-size
The size of the font. Be careful with this - text such as headings should not just be an HTML paragraph
(p) in a large font - you should still use headings (h1, h2 etc.) even though, in practice, you could make
the font-size of a paragraph larger than that of a heading (not recommended for sensible people).

font-weight
This state whether the text is bold or not. Most commonly this is used as font-weight: bold or font-
weight: normal but other values are bolder, lighter, 100, 200, 300, 400 (same as normal), 500, 600, 700
(same as bold), 800 or 900.

font-style
This state whether the text is italic or not. It can be font-style: italic or font-style: normal.

text-decoration
This state whether the text has got a line running under, over, or through it.

 text-decoration: underline, does what you would expect.

 text-decoration: overline places a line above the text.

 text-decoration: line-through puts a line through the text (“strike-through”).
This property is usually used to decorate links and you can specify no underline with text-decoration:
none.

For more notes visit https://collegenote.pythonanywhere.com

http://www.htmldog.com/reference/htmltags/h1h2h3h4h5h6/
http://www.htmldog.com/reference/cssproperties/color/
http://www.htmldog.com/reference/cssproperties/background-color/
http://www.htmldog.com/reference/htmltags/body/

29

Hey! Underlines should only really be used for links. They are a commonly understood web convention
that has lead users to generally expect underlined text to be a link.

text-transform
This will change the case of the text.

 text-transform: capitalize turns the first letter of every word into uppercase.

 text-transform: uppercase turns everything into uppercase.

 text-transform: lowercase turns everything into lowercase.

 text-transform: none I’ll leave for you to work out.
So, a few of these things used together might look like this:

body {
 font-family: arial, helvetica, sans-serif;
 font-size: 14px;
}

h1 {
 font-size: 2em;
}

h2 {
 font-size: 1.5em;
}

a {
 text-decoration: none;
}

strong {
 font-style: italic;
 text-transform: uppercase;
}

Text spacing
To space out the text on a page: letter-spacing and word-spacing properties are for spacing between
letters or words. The value can be a length or normal.

The line-height property sets the height of the lines in an element, such as a paragraph, without
adjusting the size of the font. It can be a number (which specifies a multiple of the font size, so “2” will
be two times the font size, for example), a length, a percentage, or normal.

The text-align property will align the text inside an element to left, right, center, or justify.
The text-indent property will indent the first line of a paragraph, for example, to a given length or
percentage. This is a style traditionally used in print, but rarely in digital media such as the web.

p {
 letter-spacing: 0.5em;
 word-spacing: 2em;
 line-height: 1.5;
 text-align: center;
}

For more notes visit https://collegenote.pythonanywhere.com

http://www.htmldog.com/reference/cssproperties/line-height/
http://www.htmldog.com/reference/cssproperties/text-align/
http://www.htmldog.com/reference/cssproperties/text-indent/

30

Margins and Padding
margin and padding are the two most commonly used properties for spacing-out elements. A margin is
the space outside something, whereas padding is the space inside something.
Change the CSS code for h2 to the following:

h2 {
 font-size: 1.5em;
 background-color: #ccc;
 margin: 20px;
 padding: 40px;
}

This leaves a 20-pixel width space around the secondary header and the header itself is fat from the 40-
pixel width padding.
The four sides of an element can also be set individually. margin-top, margin-right, margin-bottom,
margin-left, padding-top, padding-right, padding-bottom and padding-left are the self-
explanatory properties you can use.

The Box Model
Margins, padding and borders are all part of what’s known as the Box Model. The Box Model works like
this: in the middle you have the content area (let’s say an image), surrounding that you have the
padding, surrounding that you have the border and surrounding that you have the margin. It can be
visually represented like this:

You don’t have to use all of these, but it can be helpful to remember that the box model can be applied
to every element on the page, and that’s a powerful thing!

Borders
Borders can be applied to most HTML elements within the body. To make a border around an element,

all you need is border-style. The values can be solid, dotted, dashed, double, groove, ridge,

inset and outset.

For more notes visit https://collegenote.pythonanywhere.com

http://www.htmldog.com/reference/cssproperties/margin/
http://www.htmldog.com/reference/cssproperties/padding/
http://www.htmldog.com/reference/cssproperties/margin/
http://www.htmldog.com/reference/cssproperties/margin/
http://www.htmldog.com/reference/cssproperties/margin/
http://www.htmldog.com/reference/cssproperties/margin/
http://www.htmldog.com/reference/cssproperties/padding/
http://www.htmldog.com/reference/cssproperties/padding/
http://www.htmldog.com/reference/cssproperties/padding/
http://www.htmldog.com/reference/cssproperties/padding/
http://www.htmldog.com/reference/cssproperties/border-style/

31

border-width sets the width of the border, most commonly using pixels as a value. There are also

properties for border-top-width, border-right-width, border-bottom-width and border-left-

width.

Finally, border-color sets the color.

Add the following code to the CSS file:
h2 {
 border-style: dashed;
 border-width: 3px;
 border-left-width: 10px;
 border-right-width: 10px;
 border-color: red;
}

This will make a red dashed border around all HTML secondary headers (the h2 element) that is 3 pixels
wide on the top and bottom and 10 pixels wide on the left and right (these having over-ridden the 3
pixel wide width of the entire border).

Class and ID Selectors
Till now, we looked solely at HTML selectors - those that represent an HTML tag. You can also define
your own selectors in the form of class and ID selectors. The benefit of this is that you can have the
same HTML element, but present it differently depending on its class or ID.

In the CSS, a class selector is a name preceded by a full stop (“.”) and an ID selector is a name preceded
by ahash character (“#”).

So the CSS might look something like:

#top {
 background-color: #ccc;
 padding: 20px
}

.intro {
 color: red;
 font-weight: bold;
}

The HTML refers to the CSS by using the attributes id and class. It could look something like this:

<div id="top">

<h1>Chocolate curry</h1>

<p class="intro">This is my recipe for making curry purely with chocolate</p>

<p class="intro">Mmm mm mmmmm</p>

</div>

For more notes visit https://collegenote.pythonanywhere.com

http://www.htmldog.com/reference/cssproperties/border-width/
http://www.htmldog.com/reference/cssproperties/border-width/
http://www.htmldog.com/reference/cssproperties/border-width/
http://www.htmldog.com/reference/cssproperties/border-width/
http://www.htmldog.com/reference/cssproperties/border-width/
http://www.htmldog.com/reference/cssproperties/border-width/
http://www.htmldog.com/reference/cssproperties/border-color/
http://www.htmldog.com/reference/htmltags/h1h2h3h4h5h6/

32

The difference between an ID and a class is that an ID can be used to identify one element, whereas a
class can be used to identify more than one.

You can also apply a selector to a specific HTML element by simply stating the HTML selector first,
so p.jam { /* whatever */ } will only be applied to paragraph elements that have the class “jam”.

Grouping and Nesting
Two ways that you can simplify your code - both HTML and CSS - and make it easier to manage.

Grouping
You can give the same properties to a number of selectors without having to repeat them. For example,
if you have something like:

h2 {
 color: red;
}

.thisOtherClass {
 color: red;
}

.yetAnotherClass {
 color: red;
}

You can simply separate selectors with commas in one line and apply the same properties to them all so,
making the above:

h2, .thisOtherClass, .yetAnotherClass {
 color: red;
}

Nesting
If the CSS is structured well, there shouldn’t be a need to use many class or ID selectors. This is because
you can specify properties to selectors within other selectors.
For example:

#top {
 background-color: #ccc;
 padding: 1em
}

#top h1 {
 color: #ff0;
}

#top p {

For more notes visit https://collegenote.pythonanywhere.com

33

 color: red;
 font-weight: bold;
}

This removes the need for classes or IDs on the p and h1 tags if it is applied to HTML that looks
something like this:

<div id="top">
 <h1>Chocolate curry</h1>
 <p>This is my recipe for making curry purely with chocolate</p>
 <p>Mmm mm mmmmm</p>
</div>
This is because, by separating selectors with spaces, we are saying “h1 inside ID top is colour #ff0” and
“p inside ID top is red and bold”.

Shorthand Properties
Some CSS properties allow a string of values, replacing the need for a number of properties. These are
represented by values separated by spaces.

Margins and Padding
p {
 margin-top: 1px;
 margin-right: 5px;
 margin-bottom: 10px;
 margin-left: 20px;
}

By stating just two values (such as padding: 1em 10em;), the first value will be the top and bottom and
the second value will be the right and left.

Borders
border-width can be used in exactly the same way as margin and padding. You can also combine border-
width, border-color, and border-style with the border property. So:

p {
 border-width: 1px;
 border-color: red;
 border-style: solid;
}

The width/color/style combination can also be applied to border-top, border-right etc.

Fonts
Font-related properties can also be gathered together with the font property:

p { font: italic bold 12px/2 courier; }
This combines font-style, font-weight, font-size, line-height, and font-family.

p {
 margin: 1px 5px 10px 20px;
}

Can be summed up as:

p {
 border: 1px red solid;
}

Can be simplified as:

For more notes visit https://collegenote.pythonanywhere.com

http://www.htmldog.com/reference/htmltags/p/
http://www.htmldog.com/reference/htmltags/h1h2h3h4h5h6/
http://www.htmldog.com/reference/htmltags/h1h2h3h4h5h6/
http://www.htmldog.com/reference/htmltags/p/
http://www.htmldog.com/reference/cssproperties/border-width/
http://www.htmldog.com/reference/cssproperties/margin/
http://www.htmldog.com/reference/cssproperties/padding/
http://www.htmldog.com/reference/cssproperties/border-width/
http://www.htmldog.com/reference/cssproperties/border-width/
http://www.htmldog.com/reference/cssproperties/border-color/
http://www.htmldog.com/reference/cssproperties/border-style/
http://www.htmldog.com/reference/cssproperties/border/
http://www.htmldog.com/reference/cssproperties/border/
http://www.htmldog.com/reference/cssproperties/border/
http://www.htmldog.com/reference/cssproperties/font/
http://www.htmldog.com/reference/cssproperties/font-style/
http://www.htmldog.com/reference/cssproperties/font-weight/
http://www.htmldog.com/reference/cssproperties/font-size/
http://www.htmldog.com/reference/cssproperties/line-height/
http://www.htmldog.com/reference/cssproperties/font-family/

34

So, to put it all together, try this code:

p {
 font: 14px/1.5 "Times New Roman", times, serif;
 padding: 30px 10px;
 border: 1px black solid;
 border-width: 1px 5px 5px 1px;
 border-color: red green blue yellow;
 margin: 10px 50px;
}
Lovely, isn’t it?

Background Images
Used in a very different way to the img HTML element, CSS background images are a powerful way to
add detailed presentation to a page.
To jump in at the deep end, the shorthand property background can deal with the entire basic
background image manipulation aspects.

body {
 background: white url(http://www.htmldog.com/images/bg.gif) no-repeat top right;
}

This amalgamates these properties:

 background-color, which we have come across before.

 background-image, which is the location of the image itself.

 background-repeat, which is how the image repeats itself. Its value can be:
o repeat, the equivalent of a “tile” effect across the whole background,
o repeat-y, repeating on the y-axis, above and below,
o repeat-x (repeating on the x-axis, side-by-side), or
o no-repeat (which shows just one instance of the image).

 background-position, which can be top, center, bottom, left, right, a length, or a percentage, or
any sensible combination, such as top right.

Hey!
Background-images can be used in most HTML elements - not just for the whole page (body) and can be
used for simple but effective results. As an example, background images are used on this web site as the
bullets in lists, as the magnifying glass in the search box, and as the icons in the top left corner of some
notes, such as this one.

Display
A key trick to the manipulation of HTML elements is understanding that there’s nothing at all special
about how most of them work. Most pages could be made up from just a few tags that can be styled any
way you choose. The browser’s default visual representation of most HTML elements consists of varying
font styles, margins, padding and essentially, display types.

The most fundamental types of display are inline, block and none and they can be manipulated with the
display property and the shockingly surprising values inline, block and none.

For more notes visit https://collegenote.pythonanywhere.com

http://www.htmldog.com/reference/htmltags/img/
http://www.htmldog.com/reference/cssproperties/background-color/
http://www.htmldog.com/reference/cssproperties/background-image/
http://www.htmldog.com/reference/cssproperties/background-repeat/
http://www.htmldog.com/reference/cssproperties/background-position/
http://www.htmldog.com/reference/cssproperties/display/

35

Inline
inline does just what it says - boxes that are displayed inline follow the flow of a line. Anchor (links) and
emphasis are examples of elements that are displayed inline by default.
The following code, for example, will cause all list items in a list to appear next to each other in one
continuous line rather than each one having its own line:

li { display: inline }

Block
block makes a box standalone, fitting the entire width of its containing box, with an effective line break
before and after it. Unlike inline boxes, block boxes allow greater manipulation of height, margins, and
padding. Heading and paragraph elements are examples of elements that are displayed this way by
default in browsers.

The next example will make all links in “nav” large clickable blocks:

#navigation a {
 display: block;
 padding: 20px 10px;
}

Hey! display: inline-block will keep a box inline but lend the greater formatting flexibility of block boxes,
allowing margin to the right and left of the box, for example.

None
none, well, doesn’t display a box at all, which may sound pretty useless but can be used to good effect
with dynamic effects, such as switching extended information on and off at the click of a link, or in
alternative stylesheets.

The following code, for example, could be used in a print stylesheet to basically “turn off” the display of
elements such as navigation that would be useless in that situation:

#navigation, #related_links { display: none }

Hey! display: none and visibility: hidden vary in that, display: none takes the element’s box completely
out of play, whereas visibility: hidden keeps the box and its flow in place without visually representing
its contents. For example, if the second paragraph of 3 were set to display: none, the first paragraph
would run straight into the third whereas if it were set to visibility: hidden, there would be a gap where
the paragraph should be.

Page Layout (Positioning)
In the olden days, pre-hominid apes used HTML tables to layout web pages. Hilarious, right? But CSS,
that 2001 soon came along and changed all of that.

Layout with CSS is easy. You just take a chunk of your page and shove it wherever you choose. You can
place these chunks absolutely or relative to another chunk.

For more notes visit https://collegenote.pythonanywhere.com

36

Positioning
The position property is used to define whether a box is absolute, relative, static or fixed:

 static is the default value and renders a box in the normal order of things, as they appear in the
HTML.

 relative is much like static but the box can be offset from its original position (normal flow) with
the properties top, right, bottom and left.

 absolute pulls a box out of the normal flow of the HTML and delivers it to a world all of its own.
In this crazy little world, the absolute box can be placed anywhere on the page
using top, right, bottom and left relative to its parent element.

 fixed behaves like absolute, but it will absolutely position a box in reference to the browser
window as opposed to the web page, so fixed boxes should stay exactly where they are on the
screen even when the page is scrolled.

Layout using absolute positioning
You can create a traditional two-column layout with absolute positioning if you have something like the
following HTML:

<div id="navigation">

 This
 That
 The Other

</div>

<div id="content">
 <h1>Ra ra banjo banjo</h1>
 <p>Welcome to the city of gestures</p>
 <p>(Another greeting)</p>
</div>

And if you apply the following CSS:

#navigation {
 position: absolute;
 top: 0;
 left: 0;
 width: 200px;
}

#content {
 margin-left: 200px;
}

You will see that this will set the navigation bar to the left and set the width to 200 pixels. Because the
navigation is absolutely positioned, it has nothing to do with the flow of the rest of the page so all that is
needed is to set the left margin of the content area to be equal to the width of the navigation bar.

For more notes visit https://collegenote.pythonanywhere.com

http://www.htmldog.com/reference/cssproperties/position/

37

How stupidly easy! And you aren’t limited to this two-column approach. With clever positioning, you can
arrange as many blocks as you like. If you wanted to add a third column, for example, you could add a
“navigation2” chunk to the HTML and change the CSS to:

#navigation {
 position: absolute;
 top: 0;
 left: 0;
 width: 200px;
}

#navigation2 {
 position: absolute;
 top: 0;
 right: 0;
 width: 200px;
}

#content {
 margin: 0 200px; /* setting top and bottom margin to 0 and right and left margin to 200px */
}

Hey!
The only downside to absolutely positioned boxes is that because they live in a world of their own, there
is no way of accurately determining where they end. If you were to use the examples above and all of
your pages had small navigation bars and large content areas, you would be okay, but, especially when
using relative values for widths and sizes, you often have to abandon any hope of placing anything, such
as footer, below these boxes. If you wanted to do such a thing, one way would be to float your chunks,
rather than absolutely positioning them.

Floating
Floating a box will shift it to the right or left of a line, with surrounding content flowing around it.
Floating is normally used to shift around smaller chunks within a page, such as pushing a navigation link
to the right of a container, but it can also be used with bigger chunks, such as navigation columns.
Using float, you can float: left or float: right.
Working with the same HTML as above, you could apply the following CSS:

#navigation {
 float: left;
 width: 200px;
}

#navigation2 {
 float: right;
 width: 200px;
}

#content {

For more notes visit https://collegenote.pythonanywhere.com

http://www.htmldog.com/reference/cssproperties/float/

38

 margin: 0 200px;
}

Then, if you do not want the next box to wrap around the floating objects, you can apply
the clear property:

clear: left will clear left floated boxes
clear: right will clear right floated boxes
clear: both will clear both left and right floated boxes.

So if, for example, you wanted a footer in your page, you could add a chunk of HTML…

<div id="footer">
 <p>Footer! Hoorah!</p>
</div>

…and then add the following CSS:

#footer {
 clear: both;
}

And there you have it. A footer that will appear underneath all columns, regardless of the length of any
of them.

Hey!
This has been a general introduction to positioning and floating, with emphasis on the larger “chunks” of
a page, but remember, these methods can be applied to any box within those boxes, too. With a
combination of positioning, floating, margins, padding and borders, you should be able to represent any
web design.

Pseudo Classes
Pseudo classes are bolted on to selectors to specify a state or relation to the selector. They take the
form of selector:pseudo_class { property: value; }, simply with a colon in between the selector and the
pseudo class.

Links
link, targeting unvisited links, and visited, targeting, you guessed it, visited links, are the most basic
pseudo classes.
The following will apply colors to all links in a page depending on whether the user has visited that page
before or not:
a:link {
 color: blue;
}

a:visited {
 color: purple;
}

For more notes visit https://collegenote.pythonanywhere.com

http://www.htmldog.com/reference/cssproperties/clear/

39

Dynamic Pseudo Classes
Also commonly used for links, the dynamic pseudo classes can be used to apply styles when something
happens to something.

 active is for when something activated by the user, such as when a link is clicked on.

 hover is for a when something is passed over by an input from the user, such as when a cursor
moves over a link.

 focus is for when something gains focus, that is when it is selected by, or is ready for, keyboard
input.

Hey! focus is most often used on form elements but can be used for links. Although most users will
navigate around and between pages using a pointing device such as a mouse using a tab key and they
will gain focus one at a time.

a:active {
 color: red;
}

a:hover {
 text-decoration: none;
 color: blue;
 background-color: yellow;
}

input:focus, textarea:focus {
 background: #eee;
}

focus isn’t supported by some of the older browsers so be careful not to use it for anything vital.

First Children
Finally, there is the first-child pseudo class. This will target something only if it is the very first
descendant of an element. So, in the following HTML…

<body>
 <p>I’m the body’s first paragraph child. I rule. Obey me.</p>
 <p>I resent you.</p>
...
…if you only want to style the first paragraph, you could use the following CSS:

p:first-child {
 font-weight: bold;
 font-size: 40px;
}

CSS3 has also delivered a whole new set of pseudo classes: last-child, target, first-of-type, and more.

Pseudo Elements

For more notes visit https://collegenote.pythonanywhere.com

40

Pseudo elements suck on to selectors to apply styles much like pseudo classes, taking the form of
selector::pseudoelement { property: value; }.

There are four of the suckers. (OOPS!)

First Letters and First Lines
The first-letter pseudo element applies to the first letter inside a box and first-line to the top-most
displayed line in a box.
As an example, you could create drop caps and a bold first-line for paragraphs with something like this:

p {
 font-size: 12px;
}

p::first-letter {
 font-size: 24px;
 float: left;
}

p::first-line {
 font-weight: bold;
}

Hey!
This is CSS 3 specs that suggest pseudo elements to use two colons as p::first-line to differentiate them
with pseudo classes. But some older browsers only understands p:first-line syntax for pseudo-elements,
just not listen it, who cares about oldies anyway, oh I mean browsers grown old.

Before and After Content
The before and after pseudo elements are used in conjunction with the content property to place
content either side of a box without touching the HTML.

What? Content in my CSS? But I thought HTML was for content.

Well, it is. So use carefully. Look at it like this: You are borrowing content to use solely as presentation,
such as using “!” because it looks pretty. Not because you actually want to exclaim anything.
The value of the content property can be open-quote, close-quote, any string enclosed in quotation
marks, or any image, using url(imagename).

blockquote:before {
 content: open-quote;
}

blockquote:after {
 content: close-quote;
}

li:before {

For more notes visit https://collegenote.pythonanywhere.com

http://www.htmldog.com/reference/cssproperties/content/
http://www.htmldog.com/reference/cssproperties/content/

41

 content: "POW! ";
}

p:before {
 content: url(images/jam.jpg);
}

The content property effectively creates another box to play with so you can also add styles to the
“presentational content”:

li:before {
 content: "POW! ";
 background: red;
 color: #fc0;
}

For more notes visit https://collegenote.pythonanywhere.com

http://www.htmldog.com/reference/cssproperties/content/

42

Javascript: Client Side Scripting

Javascript is a scripting language produced by Netscape for use within HTML Web pages. It is a
lightweight, interpreted programming language supported by all modern browsers.

JavaScript Reserved Words
In JavaScript you cannot use these reserved words as variables, labels, or function names:

abstract arguments boolean break byte

case catch char class* const

continue debugger default delete do

double else enum* eval export*

extends* false final finally float

for function goto if implements

import* in instanceof int interface

let long native new null

package private protected public return

short static super* switch synchronized

this throw throws transient true

try typeof var void volatile

while with yield

Words marked with* are new in ECMAScript5

JavaScript DataTypes
JavaScript allows you to work with three primitive data types:

 Numbers eg. 123, 120.50 etc.

 Strings of text e.g. "This text string" etc.

 Boolean e.g. true or false.
JavaScript also defines two trivial data types, null and undefined, each of which defines only a single
value.

JavaScript Variables
JavaScript variables are "containers" for storing information as other languages:

var a = 5; // Integer
var b = 6;
var c = a + b;

For more notes visit https://collegenote.pythonanywhere.com

43

var x = “college”; // string
var y = ‘college’; // string - also valid
var PI = 3.14; // floating point number
var lastName = "Doe", age = 30, job = "carpenter";
var z = y + 2; // valid statement, results “college2”

JavaScript Comments
 JavaScript comments can be used to explain the code, and make the code more readable.

 JavaScript comments can also be used to prevent execution, when testing alternative code.

Single Line Comments
Single line comments start with //.

<script>

// Change heading:
document.getElementById("myH").innerHTML = "My First Page";
// Change paragraph:
document.getElementById("myP").innerHTML = "My first paragraph.";

</script>

Multi-line Comments
Multi-line comments start with /* and end with */.
<script>

/*
The code below will change
the heading with id = "myH"
and the paragraph with id = "myp"
in my web page:
*/
document.getElementById("myH").innerHTML = "My First Page";
document.getElementById("myP").innerHTML = "My first paragraph.";

</script>

Operators
Simple answer can be given using expression 4 + 5 is equal to 9. Here 4 and 5 are called operands and +
is called operator. JavaScript language supports following type of operators.

 Arithmetic Operators

 Comparision Operators

 Logical (or Relational) Operators

 Assignment Operators

 Conditional (or ternary) Operators

Let’s have a look on all operators one by one.
Let A = 10 and B = 20 then:

The Arithmatic Operators:

For more notes visit https://collegenote.pythonanywhere.com

44

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiply both operands A * B will give 200

/ Divide numerator by denumerator B / A will give 2

% Modulus Operator and remainder of after an integer
division

B % A will give 0

++ Increment operator, increases integer value by one A++ will give 11

-- Decrement operator, decreases integer value by one A-- will give 9

The Comparison Operators:

Operator Description Example

=== Checks if the values (without type-casting) of two
operands are equal or not, if yes then condition
becomes true.

‘0’===0 is false

!== Checks if the values (with type checking) of two
operands are equal or not, if yes then condition
becomes true.

‘0’!==0 is true

== Checks if the values of two operands are equal or not, if
yes then condition becomes true.

‘0’==0 is true

!= Checks if the value of two operands are equal or not, if
values are not equal then condition becomes true.

(A != B) is true.

> Checks if the value of left operand is greater than the
value of right operand, if yes then condition becomes
true.

(A > B) is not true.

< Checks if the value of left operand is less than the value
of right operand, if yes then condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater than or
equal to the value of right operand, if yes then condition
becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is less than or equal
to the value of right operand, if yes then condition
becomes true.

(A <= B) is true.

The Logical Operators:

Operator Description Example

For more notes visit https://collegenote.pythonanywhere.com

45

&& Called Logical AND operator. If both the operands are
non zero then then condition becomes true.

(A && B) is true.

|| Called Logical OR Operator. If any of the two operands
are non zero then then condition becomes true.

(A || B) is true.

! Called Logical NOT Operator. Use to reverses the logical
state of its operand. If a condition is true then Logical
NOT operator will make false.

!(A && B) is false.

The Bitwise Operators:
Assuming, A = 2 and B = 3 then:

Operator Description Example

& Called Bitwise AND operator. It performs a Boolean AND
operation on each bit of its integer arguments.

(A & B) is 2 .

| Called Bitwise OR Operator. It performs a Boolean OR
operation on each bit of its integer arguments.

(A | B) is 3.

^ Called Bitwise XOR Operator. It performs a Boolean
exclusive OR operation on each bit of its integer
arguments. Exclusive OR means that either operand one
is true or operand two is true, but not both.

(A ^ B) is 1.

~ Called Bitwise NOT Operator. It is a unary operator and
operates by reversing all bits in the operand.

(~B) is -4.

<< Called Bitwise Shift Left Operator. It moves all bits in its
first operand to the left by the number of places
specified in the second operand. New bits are filled with
zeros. Shifting a value left by one position is equivalent
to multiplying by 2, shifting two positions is equivalent
to multiplying by 4, etc.

(A << 1) is 4.

>> Called Bitwise Shift Right with Sign Operator. It moves all
bits in its first operand to the right by the number of
places specified in the second operand. The bits filled in
on the left depend on the sign bit of the original
operand, in order to preserve the sign of the result. If
the first operand is positive, the result has zeros placed
in the high bits; if the first operand is negative, the result
has ones placed in the high bits. Shifting a value right
one place is equivalent to dividing by 2 (discarding the
remainder), shifting right two places is equivalent to
integer division by 4, and so on.

(A >> 1) is 1.

>>> Called Bitwise Shift Right with Zero Operator. This
operator is just like the >> operator, except that the bits
shifted in on the left are always zero,

(A >>> 1) is 1.

For more notes visit https://collegenote.pythonanywhere.com

46

The Assignment Operators:

Operator Description Example

= Simple assignment operator, Assigns values from right
side operands to left side operand

C = A + B will assigne value of A + B
into C

+= Add AND assignment operator, It adds right operand to
the left operand and assign the result to left operand

C += A is equivalent to C = C + A

-= Subtract AND assignment operator, It subtracts right
operand from the left operand and assign the result to
left operand

C -= A is equivalent to C = C - A

*= Multiply AND assignment operator, It multiplies right
operand with the left operand and assign the result to
left operand

C *= A is equivalent to C = C * A

/= Divide AND assignment operator, It divides left operand
with the right operand and assign the result to left
operand

C /= A is equivalent to C = C / A

%= Modulus AND assignment operator, It takes modulus
using two operands and assign the result to left operand

C %= A is equivalent to C = C % A

Hey! Same logic applies to Bitwise operators so they will become like <<=, >>=, >>=, &=, |= and ^=.

Miscellaneous Operator

The Conditional Operator (? :)
There is an operator called conditional operator. This first evaluates an expression for a true or false
value and then execute one of the two given statements depending upon the result of the evaluation.
The conditional operator has this syntax:

Operator Description Example

? : Conditional Expression If Condition is true ? Then value X : Otherwise
value Y

The typeof Operator
The typeof is a unary operator that is placed before its single operand, which can be of any type. Its
value is a string indicating the data type of the operand.

Type String Returned by typeof

Number "number"

String "string"

Boolean "boolean"

Object "object"

Function "function"

For more notes visit https://collegenote.pythonanywhere.com

47

Undefined "undefined"

Null "object"

Functions
Functions are reusable blocks of code that carry out a specific task. To execute the code in a function
you call it. A function can be passed arguments to use, and a function may return a value to
whatever called it.

Syntax
A JavaScript function is defined with the function keyword, followed by a name, followed by
parentheses ().

 Function names can contain letters, digits, underscores, and dollar signs (same rules as
variables).

 The parentheses may include parameter names separated by commas: (parameter1,
parameter2, ...)

 The code to be executed, by the function, is placed inside curly brackets: {}

function [functionName](parameter1, parameter2, parameter3) {
 code to be executed
}

Hey! [] denotes optional construct.

Function parameters are the names listed in the function definition.
Function arguments are the real values received by the function when it is invoked.
Inside the function, the arguments are used as local variables.

Function can be defined in following ways. Here’s a function that adds two numbers:

function add(a, b) {
 return a + b;
};

OR

var add = function (a, b) {
 return a + b;
};

a and b are the function’s parameters, and the value it returns is signified by the return keyword.
The return keyword also stops execution of the code in the function; nothing after it will be run.

var result = add(1, 2); // result is now 3

This calls add with the arguments 1 and 2, which, inside add, will be saved in the variables a and b.

Arrays

For more notes visit https://collegenote.pythonanywhere.com

48

Arrays are lists of any kind of data, including other arrays. Each item in the array has an index-a
number-which can be used to retrieve an element from the array.

The indices start at 0; that is, the first element in the array has the index 0, and subsequent elements
have incrementally increasing indices, so the last element in the array has an index one less than the
length of the array.

In JavaScript, you create an array using the array-literal syntax:
var emptyArray = [];
var shoppingList = ['Milk', 'Bread', 'Beans'];
var numbers = [1, 2, 3, 4];

You retrieve a specific element from an array using square bracket syntax:
shoppingList[0];
Milk

Setting specific value:
shoppingList[1] = 'Cookies';
// shoppingList is now ['Milk', 'Cookies', 'Beans']

You can find the number of elements in the array using its length property:
shoppingList.length;
3

Array Methods

 valueOf()/toString(): Returns array as a string
var fruits = ["Banana", "Orange", "Apple", "Mango"];
document.getElementById("demo").innerHTML = fruits.valueOf();
document.getElementById("demo").innerHTML = fruits.toString();

 join()
<p id="demo"></p>
<script>
var fruits = ["Banana", "Orange","Apple", "Mango"];
document.getElementById("demo").innerHTML = fruits.join(" * ");
</script>

 Popping and Pushing
shoppingList.push('A new car');
// shoppingList is now ['Milk', 'Bread', 'Beans', 'A new car']
shoppingList.pop();
// shoppingList is back to ['Milk', 'Bread', 'Beans']

The pop() method returns the string that was "popped out".
The push() method returns the new array length.
var helloFrom = function (personName) {
 return "Hello from " + personName;
}

var people = ['Tom', 'Yoda', 'Ron'];

people.push('Bob');
people.push('Dr Evil');

people.pop();

for (var i=0; i < people.length; i++) {

For more notes visit https://collegenote.pythonanywhere.com

49

 var greeting = helloFrom(people[i]);
 alert(greeting);
}

 shift() and unshift():
o The shift() method removes the first element of an array, and "shifts" all other

elements one place down
o The unshift() method adds a new element to an array (at the beginning), and

"unshifts" older elements
var fruits = ["Banana", "Orange", "Apple", "Mango"];
fruits.shift(); // Removes the first element "Banana" from fruits
var fruits = ["Banana", "Orange", "Apple", "Mango"];
fruits.unshift("Lemon"); // Adds a new element "Lemon" to fruits

 splice():The splice() method can be used to add new items to an array:

var fruits = ["Banana", "Orange", "Apple", "Mango"];
fruits.splice(2, 0, "Lemon", "Kiwi");

The first parameter (2) defines the position where new elements should be added (spliced
in).
The second parameter (0) defines how many elements should be removed.
The rest of the parameters ("Lemon”, "Kiwi") define the new elements to be added.

Deleting with splice:
var fruits = ["Banana", "Orange", "Apple", "Mango"];
fruits.splice(0,1); // Removes the first element of fruits

 sort():

var fruits = ["Banana", "Orange", "Apple", "Mango"];
fruits.sort(); // Sorts the elements of fruits
fruits.reverse(); // Reverses the order of the elements
var points = [40, 100, 1, 5, 25, 10];
points.sort(function(a, b){return a-b}); //Numeric sort: ascending
points.sort(function(a, b){return b-a}); //descending

 concat():The concat() method creates a new array by concatenating two arrays.
var myGirls = ["Cecilie", "Lone"];
var myBoys = ["Emil", "Tobias","Linus"];
var myChildren = myGirls.concat(myBoys); // Concatenates (joins) myGirls and myBoys

 slice():slices out a piece of an array
var fruits = ["Banana", "Orange", "Lemon", "Apple", "Mango"];
var citrus = fruits.slice(1,3); // citrus = ‘orange,Lemon’

Objects
JavaScript objects are like a real life objects; they have properties and abilities. A JavaScript object is, in
that sense, a collection of named properties and methods - a function. An object can be stored in a
variable, and the properties and methods accessed using the dot syntax.

Variables can hold objects, and creating an object is done using a special syntax signified by braces:

var jedi = {
 name: "Yoda",
 age: 899,
 talk: function () { alert("another... Sky... walk..."); }
};

You can get data back out of an object using the dot syntax:
jedi.name; or jedi[“name”]

For more notes visit https://collegenote.pythonanywhere.com

50

Yoda
jedi.age; or jedi[“age”]
899
jedi.talk();
//produces an alert box

You can also reassign properties of an object:

jedi.name = "Mace Windu";

And add new ones on the fly:

jedi.height = "1.75m";

Properties can be any kind of data including objects and arrays. Adding an object as a property of
another object creates a nested object:

var person = {
 age: 122
};

person.name = {
 first: "Jeanne",
 last: "Calment"
};

Creating an empty object and adding properties and methods to it is possible too:

var dog = {};
dog.bark = function () { alert("Woof!"); };

Built-in JavaScript Objects
1. Date Object

The Date object lets us work with dates. A date consists of a year, a month, a week, a day, a minute, a
second, and a millisecond. Date objects are created with the new Date() constructor.

There are 4 ways of initiating a date:

new Date()
new Date(milliseconds)
new Date(dateString)
new Date(year, month, day, hours, minutes, seconds, milliseconds)

Using new Date(), without parameters, creates a new date object with the current date and time:
<script>

var d = new Date(); //Or simply Date() function can be used
var d = new Date("October 13, 2014 11:13:00");
var d = new Date(0); //new date with number of millisecond since 1970/01/01
var d = new Date(99,5,24,11,33,30,0);// The 7 numbers specify the year,
month, day, hour, minute, second, and millisecond
var d = new Date(99,5,24); //Omitting last 4 params
document.getElementById("demo").innerHTML = d;

</script>

For more notes visit https://collegenote.pythonanywhere.com

51

Date Mehtods
<script>

d = new Date();
document.getElementById("demo").innerHTML = d.toString();
document.getElementById("demo").innerHTML = d.toUTCString();
document.getElementById("demo").innerHTML = d.toDateString();

</script>

Date get methods
Get methods are used for getting a part of a date. Here are the most common (alphabetically):

Method Description

getDate() Get the day as a number (1-31)

getDay() Get the weekday a number (0-6)

getFullYear() Get the four digit year (yyyy)

getHours() Get the hour (0-23)

getMilliseconds() Get the milliseconds (0-999)

getMinutes() Get the minutes (0-59)

getMonth() Get the month (0-11)

getSeconds() Get the seconds (0-59)

getTime() Get the time (milliseconds since January 1, 1970)

<script>
var d = new Date();
document.getElementById("demo").innerHTML = d.getTime();
document.getElementById("demo").innerHTML = d.getDay();
…Try others
</script>
Date set methods
Set methods are used for setting a part of a date. Here are the most common (alphabitically):

Method Description

setDate() Set the day as a number (1-31)

setFullYear() Set the year (optionally month and day yyyy.mm.dd)

setHours() Set the hour (0-23)

setMilliseconds() Set the milliseconds (0-999)

setMinutes() Set the minutes (0-59)

For more notes visit https://collegenote.pythonanywhere.com

52

setMonth() Set the month (0-11)

setSeconds() Set the seconds (0-59)

setTime() Set the time (milliseconds since January 1, 1970)

<script>

var d = new Date();
d.setFullYear(2020, 0, 14);
d.setDate(20);
d.setDate(d.getDate() + 50);
document.getElementById("demo").innerHTML = d;

</script>

Parsing Dates
If you have an input value (or any string), you can use the Date.parse() method to convert it to
milliseconds. Date.parse() returns the number of milliseconds between the date and January 1, 1970:
<script>

var msec = Date.parse("March 21, 2012");
document.getElementById("demo").innerHTML = msec;

</script>

JavaScript Strings
A JavaScript string simply stores a series of characters like "Mount Everest". A string can be any text
inside quotes (single or double quotes).

var answer = "It's alright";
var answer = "He is called 'Johnny'";
var answer = 'He is called "Johnny"';

String length
var txt = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
var sln = txt.length;

Strings Can be Objects
Normally, JavaScript strings are primitive values, created from literals: var firstName = "John"
But strings can also be defined as objects with the keyword new: var firstName = new String("John")
var x = "John";
var y = new String("John");

// type of x will return String
// type of y will return Object

Hey! Don't create String objects. They slow down execution speed, and produce nasty side effects.

String Properties and Methods
With JavaScript, methods and properties are also available to primitive values (unlike other languages,
where only objects does have), because JavaScript treats primitive values as objects when executing
methods and properties.

For more notes visit https://collegenote.pythonanywhere.com

53

String Properties

Property Description

Constructor Returns the function that created the String object's prototype

Length Returns the length of a string

Prototype Allows you to add properties and methods to an object

String Methods

Method Description

charAt() Returns the character at the specified index (position)

charCodeAt() Returns the Unicode of the character at the specified index

concat() Joins two or more strings, and returns a copy of the joined strings

fromCharCode() Converts Unicode values to characters

indexOf() Returns the position of the first found occurrence of a specified value in a
string

lastIndexOf() Returns the position of the last found occurrence of a specified value in a string

localeCompare() Compares two strings in the current locale

match() Searches a string for a match against a regular expression, and returns the
matches

replace() Searches a string for a value and returns a new string with the value replaced

search() Searches a string for a value and returns the position of the match

slice() Extracts a part of a string and returns a new string

split() Splits a string into an array of substrings

substr() Extracts a part of a string from a start position through a number of characters

substring() Extracts a part of a string between two specified positions

toLocaleLowerCase() Converts a string to lowercase letters, according to the host's locale

toLocaleUpperCase() Converts a string to uppercase letters, according to the host's locale

toLowerCase() Converts a string to lowercase letters

toString() Returns the value of a String object

For more notes visit https://collegenote.pythonanywhere.com

54

toUpperCase() Converts a string to uppercase letters

trim() Removes whitespace from both ends of a string

valueOf() Returns the primitive value of a String object

var str = "Please locate where 'locate' occurs!";
var pos = str.indexOf("locate"); //pos = 7
var pos = str.lastIndexOf("locate"); //pos = 21
var pos = str.search("locate"); //pos = 7

var str = "Apple, Banana, Kiwi";
var res = str.slice(7,13); //res = Banana
var res = str.substring(7,13); //res = Banana
var res = str.substr(7,6); //res = Banana, second argument: length of extracted part
var res = str.slice(-12,-6); //res = Banana, counts from end of string
var res = str.slice(7);

Hey! Negative positions does not work in Internet Explorer 8 and earlier.
Hey! substring() cannot accept negative indexes, that is how it differs from slice()

str = "Please visit Microsoft!";
var n = str.replace("Microsoft","W3Schools");

var text1 = "Hello World!"; // String
var text2 = text1.toUpperCase(); // text2 is text1 converted to upper
var text2 = text1.toLowerCase();

var text1 = "Hello";
var text2 = "World";
var text3 = text1.concat(" ",text2);
var text = "Hello" + " " + "World!";
var text = "Hello".concat(" ","World!");

var str = "HELLO WORLD";
//Safe methods
str.charAt(0); // returns H
str.charCodeAt(0); // returns 72

//Unsafe way
str[0];
This is unsafe and unpredictable:

 It does not work in all browsers (not in IE5, IE6, IE7)
 It makes strings look like arrays (but they are not)
 str[0] = "H" does not give an error (but does not work)

Splitting strings (Coverting to array)
var txt = "a,b,c,d,e"; // String
txt.split(","); // Split on commas

For more notes visit https://collegenote.pythonanywhere.com

55

txt.split(" "); // Split on spaces
txt.split("|"); // Split on pipe

var txt = "Hello"; // String
txt.split(""); // Split in characters
for (var i = 0; i < arr.length; i++) {
 text += arr[i] + "
"
}
document.getElementById("demo").innerHTML = text;

JavaScript Numbers
Numbers can be written with, or without, decimals.

var x = 34.00; // A number with decimals
var y = 34; // A number without decimals
Extra large or extra small numbers can be written with scientific (exponent) notation:
Example
var x = 123e5; // 12300000
var y = 123e-5; // 0.00123

JavaScript Numbers are Always 64-bit Floating Point
Unlike many other programming languages, JavaScript does not define different types of numbers, like
integers, short, long, floating-point etc. JavaScript numbers are always stored as double precision
floating point numbers, following the international IEEE 754 standard. This format stores numbers in 64
bits, where the number (the fraction) is stored in bits 0 to 51, the exponent in bits 52 to 62, and the sign
in bit 63:

Value (aka Fraction/Mantissa) Exponent Sign

52 bits (0 - 51) 11 bits (52 - 62) 1 bit (63)

Precision
Integers (numbers without a period or exponent notation) are considered accurate up to 15 digits.

var x = 999999999999999; // x will be 999999999999999
var y = 9999999999999999; // y will be 10000000000000000

The maximum number of decimals is 17, but floating point arithmetic is not always 100% accurate:
Example
var x = 0.2 + 0.1; // x will be 0.30000000000000004

Hexadecimal
JavaScript interprets numeric constants as hexadecimal if they are preceded by 0x.
Example
var x = 0xFF; // x will be 255

By default, JavaScript displays numbers as base 10 decimals. But you can use the toString() method to
output numbers as base 16 (hex), base 8 (octal), or base 2 (binary).

For more notes visit https://collegenote.pythonanywhere.com

56

var myNumber = 128;
myNumber.toString(16); // returns 80
myNumber.toString(8); // returns 200
myNumber.toString(2); // returns 10000000

Infinity
Infinity (or -Infinity) is the value JavaScript will return if you calculate a number outside the largest
possible number.

var myNumber = 2;
while (myNumber != Infinity) { // Execute until Infinity
 myNumber = myNumber * myNumber;
}

Division by 0 (zero) also generates Infinity:
var x = 2 / 0; // x will be Infinity
var y = -2 / 0; // y will be -Infinity

NaN - Not a Number
NaN is a JavaScript reserved word indicating that a value is not a number.
Trying to do arithmetic with a non-numeric string will result in NaN (Not a Number):

var x = 100 / "Apple"; // x will be NaN (Not a Number)
var x = 100 / "10"; // x will be 10, ya its true

You can use the global JavaScript function isNaN() to find out if a value is a number.
var x = 100 / "Apple";
isNaN(x); // returns true because x is Not a Number

Number Properties and Methods
JavaScript treats primitive values as objects when executing methods and properties.

Number Properties

Property Description

MAX_VALUE Returns the largest number possible in JavaScript

MIN_VALUE Returns the smallest number possible in JavaScript

NEGATIVE_INFINITY Represents negative infinity (returned on overflow)

NaN Represents a "Not-a-Number" value

POSITIVE_INFINITY Represents infinity (returned on overflow)

var x = Number.MAX_VALUE;
Number properties belongs to the JavaScript's number object wrapper called Number.

For more notes visit https://collegenote.pythonanywhere.com

57

These properties can only be accessed as Number.MAX_VALUE.
Using myNumber.MAX_VALUE, where myNumber is a variable, expression, or value, will return
undefined:

Number Methods
Methods specific to numbers are:

Method Description

toString() Returns a number as a string

toExponential() Returns a string, with a number rounded and written using exponential
notation.

toFixed() Returns a string, with a number rounded and written with a specified number
of decimals.

toPrecision() Returns a string, with a number written with a specified length

valueOf() Returns a number as a number

var x = 123;
x.toString(); // returns 123 from variable x
(123).toString(); // returns 123 from literal 123
(100 + 23).toString(); // returns 123 from expression 100 + 23

var x = 9.656;
x.toExponential(2); // returns 9.66e+0
x.toExponential(4); // returns 9.6560e+0
x.toExponential(6); // returns 9.656000e+0

var x = 9.656;
x.toFixed(0); // returns 10
x.toFixed(2); // returns 9.66
x.toFixed(4); // returns 9.6560
x.toFixed(6); // returns 9.656000

var x = 9.656;
x.toPrecision(); // returns 9.656
x.toPrecision(2); // returns 9.7
x.toPrecision(4); // returns 9.656
x.toPrecision(6); // returns 9.65600

Converting Variables to Numbers
There are 3 JavaScript functions that can be used to convert variables to numbers:

 The Number() method
 The parseInt() method
 The parseFloat() method

These methods are not number methods, but global JavaScript methods.

The Number() Method

For more notes visit https://collegenote.pythonanywhere.com

58

x = true;
Number(x); // returns 1
x = false;
Number(x); // returns 0
x = new Date();
Number(x); // returns 1404568027739
x = "10"
Number(x); // returns 10
x = "10 20"
Number(x); // returns NaN

The parseInt() Method
parseInt("10"); // returns 10
parseInt("10.33"); // returns 10
parseInt("10 20 30"); // returns 10
parseInt("10 years"); // returns 10
parseInt("years 10"); // returns NaN

The parseFloat() Method
parseFloat("10"); // returns 10
parseFloat("10.33"); // returns 10.33
parseFloat("10 20 30"); // returns 10
parseFloat("10 years"); // returns 10
parseFloat("years 10"); // returns NaN

HTML, CSS and JavaScript together
Mostly, JavaScript runs in your web browser alongside HTML and CSS, and can be added to any web
page using a script tag. The script element can either contain JavaScript directly (internal) or link to an
external resource via a src attribute (external).
A browser then runs JavaScript line-by-line, starting at the top of the file or script element and finishing
at the bottom (unless you tell it to go elsewhere).

Internal
You can just put the JavaScript inside a script element:

<script>
 alert("Hello, world.");
</script>

External
An external JavaScript resource is a text file with a .js extension, just like an external CSS resource with
a .css extension.

To add a JavaScript file to your page, you just need to use a script tag with a src attribute pointing to the
file. So, if your file was called script.js and sat in the same directory as your HTML file, our script element
would look like this:

<script src="script.js"></script>

For more notes visit https://collegenote.pythonanywhere.com

http://www.htmldog.com/reference/htmltags/script/
http://www.htmldog.com/reference/htmltags/script/
http://www.htmldog.com/reference/htmltags/script/
http://www.htmldog.com/reference/htmltags/script/
http://www.htmldog.com/reference/htmltags/script/

59

Hey!
 You might also come across another way on your view-source travels: inline. This involves event
attributes inside HTML tags that look something like

Click me.
Just move along and pretend you haven’t witnessed this aberration. We really, really, really want to
separate our technologies so it’s preferable to avoid this approach.

Console
In a modern browser you’ll find some developer tools - often you can right click on a page, then click
“inspect element” to bring them up. Find the console and you’ll be able to type JavaScript, hit enter and
have it run immediately.

Conditionals

if (43 < 2) {

 // Run the code in here

} else {

 // Run a different bit of code

}

Looping
while

var i = 1;

while (i < 10) {

 alert(i);

 i = i + 1;

}

// i is now 10

for
for (var i = 1; i < 10; i++) {

 alert(i);

}

var cars = [];

for (i = 0, len = cars.length, text = ""; i < len; i++) {

 text += cars[i] + "
";

}

var i = 2;

var len = cars.length;

var text = "";

for (; i < len; i++) {

 text += cars[i] + "
";

}

For more notes visit https://collegenote.pythonanywhere.com

60

for-in
var person = {fname:"John", lname:"Doe", age:25};

var text = "";
var x;
for (x in person) {
 text += person[x];
}

Switch Statement
Use the switch statement to select one of many blocks of code to be executed.

switch (new Date().getDay()) {
 case 0:
 day = "Sunday";
 break;
 case 1:
 day = "Monday";
 break;
 case 2:
 day = "Tuesday";
 break;
 case 3:
 day = "Wednesday";
 break;
 case 4:
 day = "Thursday";
 break;
 case 5:
 day = "Friday";
 break;
 case 6:
 day = "Saturday";
 break;
}

Common Code and Fall-Through a default
switch (new Date().getDay()) {
 case 1:
 case 2:
 case 3:
 default:
 text = "Looking forward to the Weekend";
 break;
 case 4:
 case 5:
 text = "Soon it is Weekend";
 break;
 case 0:
 case 6:
 text = "It is Weekend";
}

For more notes visit https://collegenote.pythonanywhere.com

61

JavaScript Errors - Throw and Try to Catch
The try statement lets you test a block of code for errors.
The catch statement lets you handle the error.
The throw statement lets you create custom errors.
The finally statement lets you execute code, after try and catch, regardless of the result.

<!DOCTYPE html>
<html>
<body>

<p id="demo"></p>
<script>

try {
 ahgkjhkjlert("Welcome guest!");
}
catch(err) {
 document.getElementById("demo").innerHTML = err.message;
}

</script>
</body>
</html>
The throw Statement
The throw statement allows you to create a custom error.
The technical term for this is: throw an exception.
The exception can be a JavaScript String, a Number, a Boolean or an Object:

throw "Too big"; // throw a text
throw 500; // throw a number

If you use throw together with try and catch, you can control program flow and generate custom error
messages.

Input Validation Example
This example examines input. If the value is wrong, an exception (err) is thrown.
The exception (err) is caught by the catch statement and a custom error message is displayed:
<!DOCTYPE html>
<html>
<body>

<p>Please input a number between 5 and 10:</p>

<input id="demo" type="text">
<button type="button" onclick="myFunction()">Test Input</button>
<p id="message"></p>

<script>
function myFunction() {

For more notes visit https://collegenote.pythonanywhere.com

62

 var message, x
 message = document.getElementById("message");
 message.innerHTML = "";
 x = document.getElementById("demo").value;
 try {
 if(x == "") throw "is Empty";
 if(isNaN(x)) throw "not a number";
 if(x > 10) throw "too high";
 if(x < 5) throw "too low";
 }
 catch(err) {
 message.innerHTML = "Input " + err;
 }
}
</script>

</body>
</html>

The finally Statement
The finally statement lets you execute code, after try and catch, regardless of the result:
try {
 Block of code to try
}
catch(err) {
 Block of code to handle errors
}
finally {
 Block of code to be executed regardless of the try / catch result
}

function myFunction()
 var message, x;
 message = document.getElementById("message");
 message.innerHTML = "";
 x = document.getElementById("demo").value;
 try {
 if(x == "") throw "Empty";
 if(isNaN(x)) throw "Not a number";
 if(x > 10) throw "Too high";
 if(x < 5) throw "Too low";
 }
 catch(err) {
 message.innerHTML = "Error: " + err + ".";
 }
 finally {
 document.getElementById("demo").value = "";

For more notes visit https://collegenote.pythonanywhere.com

63

 }
}

Basic Form validation
JavaScript provides a way to validate form's data on the client's computer before sending it to the web
server for further manipulation. Form validation generally performs two functions.

 Basic Validation - First of all, the form must be checked to make sure data was entered into
each form field that required it. This would need just loop through each field in the form and
check for data.

 Data Format Validation - Secondly, the data that is entered must be checked for correct form
and value. This would need to put more logic to test correctness of data.

We will take an example to understand the process of validation. Here is the simple form to proceed:

<html>
<head>
<title>Form Validation</title>
<script type="text/javascript">
 // Form validation code will come here.
</script>
</head>
<body>
 <form action="/cgi-bin/test.cgi" name="myForm"
 onsubmit="return(validate());">
 <table cellspacing="2" cellpadding="2" border="1">
 <tr>
 <td align="right">Name</td>
 <td><input type="text" name="Name" /></td>
 </tr>
 <tr>
 <td align="right">EMail</td>
 <td><input type="text" name="EMail" /></td>
 </tr>
 <tr>
 <td align="right">Zip Code</td>
 <td><input type="text" name="Zip" /></td>
 </tr>
 <tr>
 <td align="right">Country</td>
 <td>
 <select name="Country">
 <option value="-1" selected>[choose yours]</option>
 <option value="1">USA</option>
 <option value="2">UK</option>
 <option value="3">INDIA</option>
 </select>
 </td>
 </tr>
 <tr>
 <td align="right"></td>
 <td><input type="submit" value="Submit" /></td>
 </tr>
 </table>
 </form>
 </body>
 </html>

For more notes visit https://collegenote.pythonanywhere.com

64

Basic Form Validation:
First we will show how to do a basic form validation. In the above form we are calling validate()function
to validate data when onsubmit event is occurring. Following is the implementation of this validate()
function:

<script type="text/javascript">
// Form validation code will come here.
function validate()
{

 if(document.myForm.Name.value == "")
 {
 alert("Please provide your name!");
 document.myForm.Name.focus() ;
 return false;
 }
 if(document.myForm.EMail.value == "")
 {
 alert("Please provide your Email!");
 document.myForm.EMail.focus() ;
 return false;
 }
 if(document.myForm.Zip.value == "" ||
 isNaN(document.myForm.Zip.value) ||
 document.myForm.Zip.value.length != 5)
 {
 alert("Please provide a zip in the format #####.");
 document.myForm.Zip.focus() ;
 return false;
 }
 if(document.myForm.Country.value == "-1")
 {
 alert("Please provide your country!");
 return false;
 }
 return(true);
}
</script>

Data Format Validation
Now we will see how we can validate our entered form data before submitting it to the web server.

This example shows how to validate an entered email address which means email address must contain
at least an @ sign and a dot (.). Also, the @ must not be the first character of the email address, and the
last dot must at least be one character after the @ sign:

<script type="text/javascript">
function validateEmail()
{
 var emailID = document.myForm.EMail.value;
 atpos = emailID.indexOf("@");
 dotpos = emailID.lastIndexOf(".");
 if (atpos < 1 || (dotpos - atpos < 2))
 {
 alert("Please enter correct email ID")
 document.myForm.EMail.focus() ;
 return false;
 }
 return(true);
}

For more notes visit https://collegenote.pythonanywhere.com

65

</script>

JavaScript Popup Boxes
JavaScript has three kinds of popup boxes: Alert box, Confirm box, and Prompt box.

Alert Box
An alert box is often used if you want to make sure information comes through to the user.
When an alert box pops up, the user will have to click "OK" to proceed.
Syntax
window.alert("sometext");

The window.alert method can be written without the window prefix.
Example
alert("I am an alert box!");

Confirm Box
A confirm box is often used if you want the user to verify or accept something. When a confirm box pops
up, the user will have to click either "OK" or "Cancel" to proceed. If the user clicks "OK", the box returns
true. If the user clicks "Cancel", the box returns false.
Syntax
window.confirm("sometext");

The window.confirm() method can be written without the window prefix.

Example
var r = confirm("Are you sure?");
if (r == true) {
 x = "You pressed OK!";
} else {
 x = "You pressed Cancel!";
}

Prompt Box
A prompt box is often used if you want the user to input a value before entering a page. When a prompt
box pops up, the user will have to click either "OK" or "Cancel" to proceed after entering an input value.
If the user clicks "OK" the box returns the input value. If the user clicks "Cancel" the box returns null.

Syntax
window.prompt("sometext","defaultText");

The window.prompt() method can be written without the window prefix.
Example
var person = prompt("Please enter your name", "Harry Potter");
if (person != null) {
 document.getElementById("demo").innerHTML =
 "Hello " + person + "! How are you today?";
}

For more notes visit https://collegenote.pythonanywhere.com

66

The Document Object Model (DOM)
When a web page is loaded, the browser creates a Document Object Model of the page. The HTML
DOM model is constructed as a tree of Objects:

DOM represents the internals of the page as the browser sees it, and allows the developer to alter it
with JavaScript. This is a way to manipulate the structure and style of an HTML page.
If you’d like to have a look at the DOM for a page, open up the developer tools in your browser and look
for the “elements” pane. It’s a great insight into how the browser thinks, and in most browsers you can
remove and modify elements directly. Give it a try!

Trees and Branches
HTML is an XML-like structure in that the elements form a structure of parents’ nodes with children, like
the branches of a tree. There is one root element (html) with branches like head and body, each with
their own branches. For this reason, the DOM is also called the DOM tree.
Modifying the DOM, by picking an element and changing something about it, is something done often in
JavaScript. To access the DOM from JavaScript, the document object is used. It’s provided by the
browser and allows code on the page to interact with the content.

Getting an Element

The first thing to know is how to get an element. There are a number of ways of doing it, and browsers
support different ones. Starting with the best supported we’ll move through to the latest, and most
useful, versions.

By ID

document.getElementById is a method for getting hold of an element - unsurprisingly - by its ID.

var pageHeader = document.getElementById('page-header');

The pageHeader element can then be manipulated - its size and color can be changed, and other code
can be declared to handle the element being clicked on or hovered over. It’s supported in pretty much
all the browsers you need to worry about. Notice that getElementById is a method of
the document object. Many of the methods used to access the page are found on the document object.

By Tag Name

For more notes visit https://collegenote.pythonanywhere.com

http://www.htmldog.com/reference/htmltags/html/
http://www.htmldog.com/reference/htmltags/head/
http://www.htmldog.com/reference/htmltags/body/

67

document.getElementsByTagName works in much the same way as getElementById, except that it
takes a tag name (a, ul, li, etc) instead of an ID and returns a NodeList, which is essentially an array of
the DOM Elements.

By Class Name

document.getElementsByClassName returns the same kind of NodeList as getElementsByTagName,
except that you pass a class name to be matched, not a tag name.

By CSS Selector

A couple of new methods are available in modern browsers that make selecting elements easier by
allowing the use of CSS selectors. They are document.querySelector and
document.querySelectorAll.

var pageHeader = document.querySelector('#header');
var buttons = document.querySelectorAll(.btn);

querySelector, like getElementById, returns only one element whereas querySelectorAll returns a
NodeList. If multiple elements match the selector you pass to querySelector, only the first will be
returned.
HTML DOM Events
What can JavaScript Do?
Event handlers can be used to handle, and verify, user input, user actions, and browser actions:

 Things that should be done every time a page loads
 Things that should be done when the page is closed
 Action that should be performed when a user clicks a button
 Content that should be verified when a user input data
 And more ...

Many different methods can be used to let JavaScript work with events:
 HTML event attributes can execute JavaScript code directly
 HTML event attributes can call JavaScript functions
 You can assign your own event handler functions to HTML elements
 You can prevent events from being sent or being handled
 And more ...

An HTML event can be something the browser does, or something a user does. Here are some examples
of HTML events:

 An HTML web page has finished loading
 An HTML input field was changed
 An HTML button was clicked

Often, when events happen, you may want to do something. JavaScript lets you execute code when
events are detected.

HTML allows event handler attributes, with JavaScript code, to be added to HTML elements.

With single quotes:
<some-HTML-element some-event='some JavaScript'>

With double quotes:
<some-HTML-element some-event="some JavaScript">

For more notes visit https://collegenote.pythonanywhere.com

http://www.htmldog.com/reference/htmltags/a/
http://www.htmldog.com/reference/htmltags/ul/
http://www.htmldog.com/reference/htmltags/li/

68

In the following example, an onclick attribute (with code), is added to a button element:

<button onclick='getElementById("demo").innerHTML=Date()'>The time is?</button>

In the example above, the JavaScript code changes the content of the element with id="demo". In the
next example, the code changes the content of it's own element (using this.innerHTML):

<button onclick="this.innerHTML=Date()">The time is?</button>

Hey! JavaScript code is often several lines long. It is more common to see event attributes calling
functions.

<button onclick="displayDate()">The time is?</button>

Assign Events Using the HTML DOM
<script>

document.getElementById("myBtn").onclick=function(){displayDate()};
function displayDate() {
 document.getElementById("demo").innerHTML = Date();
}

</script>

Common HTML Events
Here is a list of some common HTML events:

Event Description

Onchange An HTML element has been changed

Onclick The user clicks an HTML element

onmouseover The user moves the mouse over an HTML element

onmouseout The user moves the mouse away from an HTML element

Onkeydown The user pushes a keyboard key

Onload The browser has finished loading the page

DOM Events in Detail
Input Events

 onblur - When a user leaves an input field
 onchange - When a user changes the content of an input field
 onchange - When a user selects a dropdown value
 onfocus - When an input field gets focus
 onselect - When input text is selected
 onsubmit - When a user clicks the submit button
 onreset - When a user clicks the reset button
 onkeydown - When a user is pressing/holding down a key

For more notes visit https://collegenote.pythonanywhere.com

http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onblur
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onchange
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_dropdown
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onfocus
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onselect
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onsubmit
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onreset
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onkeydown

69

 onkeypress - When a user is pressing/holding down a key
 onkeyup - When the user releases a key
 onkeyup - When the user releases a key
 onkeydown vs onkeyup - Both

Mouse Events

 onmouseover/onmouseout - When the mouse passes over an element
 onmousedown/onmouseup - When pressing/releasing a mouse button
 onmousedown - When mouse is clicked: Alert which element
 onmousedown - When mouse is clicked: Alert which button
 onmousemove/onmouseout - When moving the mouse pointer over/out of an image
 onmouseover/onmouseout - When moving the mouse over/out of an image
 onmouseover an image map

Click Events

 onclick - When button is clicked
 ondblclick - When a text is double-clicked

Load Events

 onload - When the page has been loaded
 onload - When an image has been loaded
 onerror - When an error occurs when loading an image
 onunload - When the browser closes the document

 onresize - When the browser window is resized

function myFunction() {
 var w = window.outerWidth;
 var h = window.outerHeight;
 var txt = "Window size: width=" + w + ", height=" + h;
 document.getElementById("demo").innerHTML = txt;
}

Others
 What is the keycode of the key pressed?

<head>
<script>

function whichButton(event) {
 document.getElementById("demo").innerHTML = event.keyCode;

}
</script>
</head>
<body onkeyup="whichButton(event)">

<p id="demo"></p>
</body>

 What are the coordinates of the cursor?
<head>
<script>

function show_coords(event) {
 document.getElementById("demo").innerHTML =

For more notes visit https://collegenote.pythonanywhere.com

http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onkeypress
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onkeyup
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onkeyup2
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onkeydownup
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onmouse
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onmousedown
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_srcelement
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onmousedown2
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onmousemove
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onmouseover
http://www.w3schools.com/js/tryit.asp?filename=tryjs_imagemap
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onclick
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_ondblclick
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_body_onload
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_img_onload
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onerror
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onunload
http://www.w3schools.com/js/tryit.asp?filename=tryjs_events_onresize
http://www.w3schools.com/js/tryit.asp?filename=tryjs_dom_event_keycode
http://www.w3schools.com/js/tryit.asp?filename=tryjs_dom_event_clientxy

70

 "X= " + event.clientX + "
Y= " + event.clientY;
}

</script>
</head>
<body>
 <p onmousedown="show_coords(event)">

Click this paragraph to display the x and y coordinates of the
mouse pointer.</p>

<p id="demo"></p>
</body>

 What are the coordinates of the cursor, relative to the screen?
<head>
<script>

function coordinates(event) {
 document.getElementById("demo").innerHTML =
 "X = " + event.screenX + "
Y = " + event.screenY;
}

</script>
</head>
<body>
 <p onmousedown="coordinates(event)">

Click this paragraph, to display the x and y coordinates of
the cursor, relative to the screen.

</p>
<p id="demo"></p>

</body>

 Was the shift key pressed?
<head>
<script>

function isKeyPressed(event) {
 var text = "The shift key was NOT pressed!";
 if (event.shiftKey == 1) {
 text = "The shift key was pressed!";
 }
 document.getElementById("demo").innerHTML = text;
}

</script>
</head>
<body onmousedown="isKeyPressed(event)">

<p>Click on this paragraph. An alert box will tell you if you
pressed the shift key or not.</p><p id="demo">
</p>

</body>

 Which event type occurred?
event.type

Changing HTML Style

For more notes visit https://collegenote.pythonanywhere.com

http://www.w3schools.com/js/tryit.asp?filename=tryjs_dom_event_screenxy
http://www.w3schools.com/js/tryit.asp?filename=tryjs_dom_event_shiftkey
http://www.w3schools.com/js/tryit.asp?filename=tryjs_dom_event_type

71

The HTML DOM allows JavaScript to change the style of HTML elements.
To change the style of an HTML element, use this syntax:

document.getElementById(id).style.property = new style

The following example changes the style of a <p> element:

<body>
<p id="p2">Hello World!</p>
<script>

document.getElementById("p2").style.color = "blue";
</script>
<p>The paragraph above was changed by a script.</p>
</body>

Changing style upon button click:
<!DOCTYPE html>
<html>
<body>

<h1 id="id1">My Heading 1</h1>
<button type="button"

onclick="document.getElementById('id1').style.color = 'red'">Click Me!</button>
</body>
</html>

JS HTML DOM Document
In the HTML DOM object model, the document object represents your web page and is the owner of all
other objects in your web page. If you want to access objects in an HTML page, you always start with
accessing the document object. Below are some examples of how you can use the document object to
access and manipulate HTML.

Finding HTML Elements

Method Description

document.getElementById(“element_id”) Find an element by element id

document.getElementsByTagName(“tag_name”) Find elements by tag name

document.getElementsByClassName(“class_name”) Find elements by class name

Changing HTML Elements

Method Description

element.innerHTML=”bla bla” Change the inner HTML of an element

element.attribute= Change the attribute of an HTML element

element.setAttribute(attribute,value) Change the attribute of an HTML element

For more notes visit https://collegenote.pythonanywhere.com

72

element.style.property= Change the style of an HTML element

Adding and Deleting Elements

Method Description

document.createElement(“tr/input etc”)
<div id="div1">
<p id="p1">This is a paragraph.</p>
<p id="p2">This is another paragraph.</p>
</div>
<script>
var para = document.createElement("p");
var node = document.createTextNode("This is new.");
para.appendChild(node);

var element = document.getElementById("div1");
element.appendChild(para);
</script>

Create an HTML element

document.removeChild(node)
<div id="div1">
<p id="p1">This is a paragraph.</p>
<p id="p2">This is another paragraph.</p>
</div>

<script>
var para = document.createElement("p");
var node = document.createTextNode("This is new.");
para.appendChild(node);

var element = document.getElementById("div1");
var child = document.getElementById("p1");
element.insertBefore(para,child);
</script>

Remove an HTML element

document.appendChild(node) Add an HTML element

document.replaceChild(newNode, curr_Node)
<div id="div1">
<p id="p1">This is a paragraph.</p>
<p id="p2">This is another paragraph.</p>
</div>

<script>
var para = document.createElement("p");
var node = document.createTextNode("This is new.");
para.appendChild(node);

var parent = document.getElementById("div1");
var child = document.getElementById("p1");
parent.replaceChild(para,child);
</script>

Replace an HTML element

document.write(text) Write into the HTML output stream

Adding Events Handlers

For more notes visit https://collegenote.pythonanywhere.com

73

Method Description

document.getElementById(id).onclick=function(){code} Adding event handler code to an onclick event

Finding HTML Objects
The first HTML DOM Level 1 (1998) defined 11 HTML objects, object collections, and properties. These
are still valid in HTML5.
Later, in HTML DOM Level 3, more objects, collections, and properties were added.

Method Description

document.anchors Returns all <a> with a value in the name attribute

document.applets Returns all <applet> elements (Deprecated in HTML5)

document.baseURI Returns the absolute base URI of the document

document.body Returns the <body> element

document.cookie Returns the document's cookie

document.doctype Returns the document's doctype

document.documentElement Returns the <html> element

document.documentMode Returns the mode used by the browser

document.documentURI Returns the URI of the document

document.domain Returns the domain name of the document server

document.domConfig Returns the DOM configuration

document.embeds Returns all <embed> elements

document.forms Returns all <form> elements

document.head Returns the <head> element

document.images Returns all <image> elements

document.implementation Returns the DOM implementation

document.inputEncoding Returns the document's encoding (character set)

document.lastModified Returns the date and time the document was updated

document.links Returns all <area> and <a> elements value in href

document.readyState Returns the (loading) status of the document

For more notes visit https://collegenote.pythonanywhere.com

74

document.referrer Returns the URI of the referrer (the linking document)

document.scripts Returns all <script> elements

document.strictErrorChecking Returns if error checking is enforced

document.title Returns the <title> element

document.URL Returns the complete URL of the document

JavaScript Cookies
Cookies let you store user information in web pages.

What are Cookies?
Cookies are data, stored in small text files, on your computer. When a web server has sent a web
page to a browser, the connection is shut down, and the server forgets everything about the user.
Cookies were invented to solve the problem "how to remember information about the user": When a
user visits a web page, his name can be stored in a cookie. Next time the user visits the page, the

cookie "remembers" his name.
Cookies are saved in name-value pairs like: username=John Doe

When a browser request a web page from a server, cookies belonging to the page is added to the
request. This way the server gets the necessary data to "remember" information about users.

Create a Cookie with JavaScript
JavaScript can create, read, and delete cookies with the document.cookie property.

With JavaScript, a cookie can be created like this:

document.cookie="username=John Doe";

You can also add an expiry date (in UTC time). By default, the cookie is deleted when the browser is

closed:

document.cookie="username=John Doe; expires=Thu, 18 Dec 2013 12:00:00 UTC";

With a path parameter, you can tell the browser what path the cookie belongs to. By default, the
cookie belongs to the current page.

document.cookie="username=John Doe; expires=Thu, 18 Dec 2013 12:00:00 UTC; path=/";

Read a Cookie with JavaScript
With JavaScript, cookies can be read like this:

var x = document.cookie;

Hey! document.cookie will return all cookies in one string much like: cookie1=value; cookie2=value;
cookie3=value;

Change a Cookie with JavaScript
With JavaScript, you can change a cookie the same way as you create it:

For more notes visit https://collegenote.pythonanywhere.com

75

document.cookie="username=John Smith; expires=Thu, 18 Dec 2013 12:00:00 UTC; path=/";

The old cookie is overwritten.

Delete a Cookie with JavaScript
Deleting a cookie is very simple. Just set the expires parameter to a passed date:
document.cookie = "username=; expires=Thu, 01 Jan 1970 00:00:00 UTC";

Note that you don't have to specify a cookie value when you delete a cookie.

Example Altogether
function setCookie(cname, cvalue, exdays) {
 var d = new Date();
 d.setTime(d.getTime() + (exdays*24*60*60*1000));
 var expires = "expires="+d.toUTCString();
 document.cookie = cname + "=" + cvalue + "; " + expires;
}

function getCookie(cname) {
 var name = cname + "=";
 var ca = document.cookie.split(';');
 for(var i=0; i<ca.length; i++) {
 var c = ca[i];
 while (c.charAt(0)==' ') c = c.substring(1);
 if (c.indexOf(name) != -1) return c.substring(name.length, c.length);
 }
 return "";
}

function checkCookie() {
 var user = getCookie("username");
 if (user != "") {
 alert("Welcome again " + user);
 } else {
 user = prompt("Please enter your name:", "");
 if (user != "" && user != null) {
 setCookie("username", user, 365);
 }
 }
}

For more notes visit https://collegenote.pythonanywhere.com

Unit 2: Issues of Web Technology

Web Application Architecture

Database Architecture and Data Independence

Each level is independent of the levels below it

Logical Independence: The ability to change the logical schema without changing the external schema
or application programs

 Can add new fields, new tables without changing views

 Can change structure of tables without changing view
Physical Independence: The ability to change the physical schema without changing the logical schema

 Storage space can change

 Type of some data can change for reasons of optimization

Moral: Keep the VIEW (what the user sees) independent of the MODEL (domain knowledge)

N-tier Architectures

Significance of “Tiers”
 N-tier architectures have the same components

 Presentation
 Business/Logic
 Data

What users see

Tables and links

Files on disk

For more notes visit https://collegenote.pythonanywhere.com

N-tier architectures try to separate the components into different tiers/layers
 Tier: physical separation
 Layer: logical separation

1-Tier Architecture

All 3 layers are on the same machine:

 All code and processing kept on a single machine
 Presentation, Logic, Data layers are tightly connected
 Scalability: Single processor means hard to increase volume of processing
 Portability: Moving to a new machine may mean rewriting everything
 Maintenance: Changing one layer requires changing other layers

2-Tier Architecture

Database runs on Server

 Separated from client
 Easy to switch to a different database
 Presentation and logic layers still tightly connected
 Heavy load on server
 Potential congestion on network
 Presentation still tied to business logic

3-Tier Architecture

For more notes visit https://collegenote.pythonanywhere.com

 Each layer can potentially run on a different machine
 Presentation, logic, data layers disconnected

Typical 3-Tier Architecture

3-Tier Architecture Principles

 Client-server architecture
 Each tier (Presentation, Logic, Data) should be independent and should not expose

dependencies related to the implementation

Presentation Layer
 Provides user interface
 Handles the interaction with

the user
 Sometimes called the GUI or

client view or front-end
 Should not contain business

logic or data access code

Logic Layer
 The set of rules for processing

information
 Can accommodate many users
 Sometimes called middleware/

back-end
 Should not contain

presentation or data access
code

Data Layer
 The physical storage layer for

data persistence
 Manages access to DB or file

system
 Sometimes called back-end
 Should not contain

presentation or business logic
code

For more notes visit https://collegenote.pythonanywhere.com

 Unconnected tiers should not communicate
 Change in platform affects only the layer running on that particular platform

The 3-Tier Architecture for Web Apps
 Presentation Layer

o Static or dynamically generated content rendered by the browser (front-end)
 Logic Layer

o A dynamic content processing and generation level application server, e.g., Java EE,
ASP.NET, PHP, ColdFusion platform (middleware)

 Data Layer
o A database, comprising both data sets and the database management system or RDBMS

software that manages and provides access to the data (back-end)

3-Tier Architecture - Advantages
 Independence of Layers
 Easier to maintain
 Components are reusable
 Faster development (division of work)
 Web designer does presentation
 Software engineer does logic
 DB admin does data model

Design Patterns
Design Problems & Decisions

 Construction and testing
o How do we build a web application?
o What technology should we choose?

 Re-use
o Can we use standard components?

 Scalability
o How will our web application cope with large numbers of requests?

 Security
o How do we protect against attack, viruses, malicious data access, denial of service?

 Different data views
o user types, individual accounts, data protection

Moral: Need for general and reusable solution: Design Patterns

What is Design Pattern?
A general and reusable solution to a commonly occurring problem in the design of software

 A template for how to solve a problem that has been used in many different situations
 NOT a finished design

o the pattern must be adapted to the application
o cannot simply translate into code

Origin of Design Patterns

 Architectural concept by Christopher Alexander (1977/79)
 Adapted to OO Programming by Beck and Cunningham (1987)

For more notes visit https://collegenote.pythonanywhere.com

 Popularity in CS after the book: “Design Patterns: Elements of Re-useable Object-
oriented software”, 1994. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.

 Now widely-used in software engineering

MVC Design Pattern
Design Problem

 Need to change the look-and-feel without changing the core/logic.
 Need to present data under different contexts (e.g., powerful desktop, web, mobile

device).
 Need to interact with/access data under different contexts (e.g., touch screen on a

mobile device, keyboard on a computer)
 Need to maintain multiple views of the same data (list, thumbnails, detailed, etc.)

Design Solution

 Separate core functionality from the presentation and control logic that uses this
functionality

 Allow multiple views to share the same data model
 Make supporting multiple clients easier to implement, test, and maintain

The Model-View-Controller Pattern
 Design pattern for graphical systems that promotes separation between model and view

 With this pattern the logic required for data maintenance (database, text file) is
separated from how the data is viewed (graph, numerical) and how the data can be
interacted with (GUI, command line)

For more notes visit https://collegenote.pythonanywhere.com

Fig: MVC Architecture

The MVC Pattern

Model

 manages the behavior and data of the application domain
 responds to requests for information about its state (usually from the view)
 follows instructions to change state (usually from the controller)

View
 renders the model into a form suitable for interaction, typically a user interface (multiple views

can exist for a single model for different purposes)
Controller

 receives user input and initiates a response by making calls on model objects
 accepts input from the user and instructs the model and viewport to perform actions based on

that input

The MVC Pattern (in practice)

Model

 Contains domain-specific knowledge
 Records the state of the application
 E.g., what items are in shopping cart
 Often linked to a database
 Independent of view
 One model can link to different views

View
 Presents data to the user

For more notes visit https://collegenote.pythonanywhere.com

 Allows user interaction
 Does no processing

Controller
 defines how user interface reacts to user input (events)
 receives messages from view (where events come from)
 sends messages to model (tells what data to display)

The MVC for Web Applications

Model

 database tables (persistent data)
 session information (current system state data)
 rules governing transactions

View
 (X)HTML
 CSS style sheets (CSS2, CSS3)
 server-side templates (e.g. ASP.NET Web Forms)

Controller
 client-side scripting
 http request processing
 business logic/preprocessing

MVC Advantages
 Clarity of Design

o model methods give an API for data and state
o eases the design of view and controller

 Efficient Modularity
o any of the components can be easily replaced

 Multiple Views
o many views can be developed as appropriate
o each uses the same API for the model

 Easier to Construct and Maintain
o simple (text-based) views while constructing
o more views and controllers can be added
o stable interfaces ease development

 Distributable
o natural fit with a distributed environment

3-tier Architecture vs. MVC Architecture
Communication

 3-tier: The presentation layer never communicates directly with the data layer-only through the
logic layer (linear topology)

 MVC: All layers communicate directly (triangle topology)

Usage
 3-tier: Mainly used in web applications where the client, middleware and data tiers ran on

physically separate platforms

For more notes visit https://collegenote.pythonanywhere.com

 MVC: Historically used on applications that run on a single graphical workstation (applied to
separate platforms as Model 2) [Model 2 is a complex design pattern used in the design
of Java Web applications which separates the display of content from the logic used to obtain
and manipulate the content]

HyperText Transfer Protocol (HTTP)

Definition:
The HTTP is an application protocol for distributed, collaborative, hypermedia information systems.
HTTP is the foundation of data communication for the World Wide Web. Hypertext is structured text
that uses logical links (hyperlinks) between nodes containing text. HTTP is the protocol to exchange or
transfer hypertext.
HTTP is a stateless, application-layer protocol for communicating between distributed systems, and is
the foundation of the modern web.

Origin:
Tim Berners-Lee and his team are credited with inventing the original HTTP along with HTML and the
associated technology for a web server and a text-based web browser. Berners-Lee first proposed the
"WorldWideWeb" project in 1989-now known as the World Wide Web. The first version of the protocol
had only one method, namely GET, which would request a page from a server. The response from the
server was always an HTML page.

How it works?
HTTP allows for communication between a variety of hosts and clients, and supports a mixture of
network configurations. To make this possible, it assumes very little about a particular system, and does
not keep state between different message exchanges. This makes HTTP a stateless protocol. The
communication usually takes place over TCP/IP, but any reliable transport can be used. The default port
for TCP/IP is 80, but other ports can also be used.
Communication between a host and a client occurs, via a request/response pair. The client (Web
browser) initiates an HTTP request message, which is serviced through a HTTP response message in
return. A web browser is an example of a user agent (UA). Other types of user agent include the
indexing software used by search providers (web crawlers), voice browsers, mobile apps, and other
software that accesses, consumes, or displays web content.

URLs
At the heart of web communications is the request message, which are sent via Uniform Resource
Locators (URLs). You guys are already familiar with URLs, but for completeness sake, I'll include it here.
URLs have a simple structure that consists of the following components:

For more notes visit https://collegenote.pythonanywhere.com

The protocol is typically http, but it can also be https for secure communications. The default port is 80,
but one can be set explicitly, as illustrated in the above image. The resource path is the local path to the
resource on the server.

Verbs
URLs reveal the identity of the particular host with which we want to communicate, but the action that
should be performed on the host is specified via HTTP verbs. Of course, there are several actions that a
client would like the host to perform. HTTP has formalized on a few that captures the essentials that are
universally applicable for all kinds of applications.
These request verbs are:

 GET: fetch an existing resource. The URL contains all the necessary information the server needs
to locate and return the resource.

 POST: create a new resource. POST requests usually carry a payload that specifies the data for
the new resource.

 PUT: update an existing resource. The payload may contain the updated data for the resource.
 DELETE: delete an existing resource.

The above four verbs are the most popular, and most tools and frameworks explicitly expose these
request verbs. PUT and DELETE are sometimes considered specialized versions of the POST verb, and
they may be packaged as POST requests with the payload containing the exact action: create, update or
delete.

There are some lesser used verbs that HTTP also supports:

 HEAD: this is similar to GET, but without the message body. It's used to retrieve the server
headers for a particular resource, generally to check if the resource has changed, via
timestamps.

 TRACE: used to retrieve the hops that a request takes to round trip from the server. Each
intermediate proxy or gateway would inject its IP or DNS name into the via header field. This can
be used for diagnostic purposes.

 OPTIONS: used to retrieve the server capabilities. On the client-side, it can be used to modify
the request based on what the server can support.

Status Codes
With URLs and verbs, the client can initiate requests to the server. In return, the server responds with
status codes and message payloads. The status code is important and tells the client how to interpret
the server response. The HTTP spec defines certain number ranges for specific types of responses:

1xx: Informational Messages
All HTTP/1.1 clients are required to accept the Transfer-Encoding header.

For more notes visit https://collegenote.pythonanywhere.com

This class of codes was introduced in HTTP/1.1 and is purely provisional. The server can send a Expect:
100-continue message, telling the client to continue sending the remainder of the request, or ignore if it
has already sent it. HTTP/1.0 clients are supposed to ignore this header.

2xx: Successful
This tells the client that the request was successfully processed. The most common code is 200 OK. For
a GET request, the server sends the resource in the message body. There are other less frequently used
codes:

 202 Accepted: the request was accepted but may not include the resource in the response. This
is useful for async processing on the server side. The server may choose to send information for
monitoring.

 204 No Content: there is no message body in the response.
 205 Reset Content: indicates to the client to reset its document view.
 206 Partial Content: indicates that the response only contains partial content. Additional

headers indicate the exact range and content expiration information.

3xx: Redirection
This requires the client to take additional action. The most common use-case is to jump to a different
URL in order to fetch the resource.

 301 Moved Permanently: the resource is now located at a new URL.
 303 See Other: the resource is temporarily located at a new URL. The Location response header

contains the temporary URL.
 304 Not Modified: the server has determined that the resource has not changed and the client

should use its cached copy. This relies on the fact that the client is sending ETag (Entity Tag)
information that is a hash of the content. The server compares this with its own
computed ETag to check for modifications.

4xx: Client Error
These codes are used when the server thinks that the client is at fault, either by requesting an invalid
resource or making a bad request. The most popular code in this class is 404 Not Found, which I think
everyone will identify with. 404 indicates that the resource is invalid and does not exist on the server.
The other codes in this class include:

 400 Bad Request: the request was malformed.
 401 Unauthorized: request requires authentication. The client can repeat the request with

the Authorization header. If the client already included the Authorization header, then the
credentials were wrong.

 403 Forbidden: server has denied access to the resource.
 405 Method Not Allowed: invalid HTTP verb used in the request line, or the server does not

support that verb.
 409 Conflict: the server could not complete the request because the client is trying to modify a

resource that is newer than the client's timestamp. Conflicts arise mostly for PUT requests
during collaborative edits on a resource.

5xx: Server Error
This class of codes is used to indicate a server failure while processing the request. The most commonly
used error code is 500 Internal Server Error. The others in this class are:

 501 Not Implemented: the server does not yet support the requested functionality.

For more notes visit https://collegenote.pythonanywhere.com

 503 Service Unavailable: this could happen if an internal system on the server has failed or the
server is overloaded. Typically, the server won't even respond and the request will timeout.

Request and Response Message Formats
So far, we've seen that URLs, verbs and status codes make up the fundamental pieces of an HTTP
request/response pair.

Let's now look at the content of these messages. The HTTP specification states that a request or
response message has the following generic structure:

1
2
3
4
5
6
7

message = <start-line>
 *(<message-header>)
 CRLF
 [<message-body>]

<start-line> = Request-Line | Status-Line
<message-header> = Field-Name ':' Field-Value

It's mandatory to place a new line between the message headers and body. The message can contain
one or more headers, of which are broadly classified into:

 General headers: headers shared by for both request and response messages.

1
2
3
4
5
6
7
8
9

general-header = Cache-Control
 | Connection
 | Date
 | Pragma
 | Trailer
 | Transfer-Encoding
 | Upgrade
 | Via
 | Warning

 Request specific headers: Will be explained in Message-Format section.
 Response specific headers: Will be explained in Message-Format section.
 Entity headers:

Request and Response messages may also include entity headers to provide meta-information
about the content (aka Message Body or Entity). These headers include:

For more notes visit https://collegenote.pythonanywhere.com

01
02
03
04
05
06
07
08
09
10

entity-header = Allow
 | Content-Encoding
 | Content-Language
 | Content-Length
 | Content-Location
 | Content-MD5
 | Content-Range
 | Content-Type
 | Expires
 | Last-Modified

All of the Content- prefixed headers provide information about the structure, encoding and size of the
message body. Some of these headers need to be present if the entity is part of the message.

Request Format
The request message has the same generic structure as above, except for the request line which looks
like:

1
2
3
4
5
6
7
8

Request-Line = Method SP URI SP HTTP-Version CRLF
Method = "OPTIONS"

 | "HEAD"
 | "GET"
 | "POST"
 | "PUT"
 | "DELETE"
 | "TRACE"

SP is the space separator between the tokens. HTTP-Version is specified as "HTTP/1.1" and then
followed by a new line. Thus, a typical request message might look like:

1
2
3
4
5
6

GET /articles/http-basics HTTP/1.1
Host: www.articles.com
Connection: keep-alive
Cache-Control: no-cache
Pragma: no-cache
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Note the request line followed by many request headers. The Host header is mandatory for HTTP/1.1
clients. GET requests do not have a message body, but POST requests can contain the post data in the
body.
The request headers act as modifiers of the request message. The complete list of known request
headers is not too long, and is provided below. Unknown headers are treated as entity-header fields.

01
02
03
04
05
06
07
08

request-header = Accept
 | Accept-Charset
 | Accept-Encoding
 | Accept-Language
 | Authorization
 | Expect
 | From
 | Host

For more notes visit https://collegenote.pythonanywhere.com

09
10
11
12
13
14
15
16
17
18
19

 | If-Match
 | If-Modified-Since
 | If-None-Match
 | If-Range
 | If-Unmodified-Since
 | Max-Forwards
 | Proxy-Authorization
 | Range
 | Referer
 | TE
 | User-Agent

The Accept prefixed headers indicate the acceptable media-types, languages and character sets on the
client. From, Host, Referrer and User-Agent identify details about the client that initiated the request.
The If- prefixed headers are used to make a request more conditional, and the server returns the
resource only if the condition matches. Otherwise, it returns a 304 Not Modified. The condition can be
based on a timestamp or an ETag (a hash of the entity).

Response Format
The response format is similar to the request message, except for the status line and headers. The status
line has the following structure:

1 Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

 HTTP-Version is sent as HTTP/1.1
 The Status-Code is one of the many statuses discussed earlier.
 The Reason-Phrase is a human-readable version of the status code.

A typical status line for a successful response might look like so:

1 HTTP/1.1 200 OK

The response headers are also fairly limited, and the full set is given below:

1
2
3
4
5
6
7
8
9

response-header = Accept-Ranges
 | Age
 | ETag
 | Location
 | Proxy-Authenticate
 | Retry-After
 | Server
 | Vary
 | WWW-Authenticate

 Age is the time in seconds since the message was generated on the server.
 ETag is the MD5 hash of the entity and used to check for modifications.
 Location is used when sending a redirection and contains the new URL.
 Server identifies the server generating the message.

For more notes visit https://collegenote.pythonanywhere.com

It’s been a lot of theory guys; let’s play with some tools to view HTTP traffic like chrome/webkit
inspector in class.

File Transfer Protocol (FTP)
The FTP is a standard network protocol used to transfer computer files from one host to another host
over a TCP-based network, such as the Internet. FTP is built on client-server architecture and uses
separate control and data connections between the client and the server. FTP users may authenticate
themselves using a clear-text sign-in protocol, normally in the form of a username and password, but
can connect anonymously if the server is configured to allow it. Once a FTP connection is established,
you can use it to send, receive, delete, rename or move files.

How does FTP work?
When you want to copy files between two computers that are on the same local network, often you can
simply "share" a drive or folder, and copy the files the same way you would copy files from one place to
another on your own PC. What if you want to copy files from one computer to another that is halfway
around the world? You would probably use your Internet connection. However, for security reasons, it
is very uncommon to share folders over the Internet. File transfers over the Internet use special
techniques, of which one of the oldest and most widely-used is FTP Transferring files from a client
computer to a server computer is called "uploading" and transferring from a server to a client
is "downloading".

The FTP client establishes a connection to a remote FTP server in the active or passive mode. Passive
mode is used when the client is behind a firewall and cannot accept TCP connections. Depending on the
server settings, the client connects to the server anonymously or with a user name and password.
Separate control and data connections are initiated in parallel between the client and the server. Once
connected, the client sends and/or receives single files or groups of files. The files are transferred in
either stream mode, block mode or compressed mode. The client closes the connection once the server
indicates the end of the data transfer.

FTP and Internet Connections
FTP uses one connection for commands and the other for sending and receiving data. FTP has a
standard port number on which the FTP server "listens" for connections. A port is a "logical connection
point" for communicating using the Internet Protocol (IP). The standard port number used by FTP
servers is 21 and is used only for sending commands. Since port 21 is used exclusively for sending
commands, this port is referred to as a command port. For example, to get a list of folders and files
present on the FTP server, the FTP Client issues a "LIST" command. The FTP server then sends a list of all
folders and files back to the FTP Client. So what about the internet connection used to send and receive
data? The port that is used for transferring data is referred to as a data port. The number of the data
port will vary depending on the "mode" of the connection.

For more notes visit https://collegenote.pythonanywhere.com

Active and Passive Connection Mode
The FTP server may support Active or Passive connections, or both. In an Active FTP connection, the
client opens a port and listens and the server actively connects to it. In a Passive FTP connection, the
server opens a port and listens (passively) and the client connects to it.

Most FTP client programs select passive connection mode by default because server administrators
prefer it as a safety measure. Firewalls generally block connections that are "initiated" from the
outside.

If you are connecting to the FTP server using Active mode of connection you must set your firewall to
accept connections to the port that your FTP client will open. However, many Internet service providers
block incoming connections to all ports above 1024. Active FTP servers generally use port 20 as their
data port.

It's a good idea to use Passive mode to connect to an FTP server. Most FTP servers support the Passive
mode.

What are the different data representation modes on FTP?
Data transferred over FTP is sent in ASCII, binary, EBCDIC or local modes. Most of the FTP clients
automatically determine the data transfer mode based on the contents or extension of the file. Audio,
video and image files are generally transferred in binary mode, whereas HTML, script and text files are
transferred in the ASCII mode. Computers with identical setups transfer data in the local mode, and
hosts using the EBCDIC character set use the EBCDIC mode for data transfer.

What are the uses of FTP?
The most common use of FTP is to upload and download files, such as web page files, to a server.
Websites use it in anonymous mode to power downloads. Some companies distribute their software
updates using FTP.

What are the disadvantages of FTP?
FTP is not a secure protocol. FTP sends and receives all data in clear text and is, hence, vulnerable to
packet capture or sniffing, port stealing, spoof attacks, bounce attacks, brute force attacks and user
name hijacking. FTPS, not to be confused with SFTP, is an extension of the standard FTP that allows the
FTP clients to request an encrypted session.

What are the popular FTP clients and servers?

For more notes visit https://collegenote.pythonanywhere.com

Cerberus FTP and Complete FTP is a couple of commercial FTP servers. FileZilla is an open-source
freeware FTP server that also provides a free FTP client. Some of the other popular FTP clients are
WinSCP, Transmit, FireFTP and Cyberduck.

FTP is a widely used method to transfer files over a network. FTP clients today have excellent graphical
user interfaces. File transfers are seamless and just a matter of drag and drop.

For more notes visit https://collegenote.pythonanywhere.com

Unit 3: The Client Tier
Introduction to XML

In short:

 XML stands for EXtensible Markup Language

 Most Hyped Technology during the late 90s and the current decade

 XML is a markup language much like HTML

 XML was designed to describe data, not to display data as HTML

 XML tags are not predefined. You must define your own tags

 XML is designed to be self-descriptive

 XML is a W3C Recommendation since February 10, 1998.

The essence of XML is in its name: Extensible Markup Language.
Extensible
XML is extensible. It lets you define your own tags, the order in which they occur, and how they should
be processed or displayed. Another way to think about extensibility is to consider that XML allows all of
us to extend our notion of what a document is: it can be a file that lives on a file server, or it can be a
transient piece of data that flows between two computer systems (as in the case of Web Services).
Markup
The most recognizable feature of XML is its tags, or elements (to be more accurate). In fact, the
elements you’ll create in XML will be very similar to the elements you’ve already been creating in your
HTML documents. However, XML allows you to define your own set of tags.
Language
XML is a language that’s very similar to HTML. It’s much more flexible than HTML because it allows you
to create your own custom tags. However, it’s important to realize that XML is not just a language. XML
is a meta-language: a language that allows us to create or define other languages. For example, with
XML we can create other languages, such as RSS, MathML (a mathematical markup language), and even
tools like XSLT.

Moral: XML is a software- and hardware-independent tool for carrying information especially in WEB.

Example:
<?xml version="1.0" encoding="UTF-8"?>
<note>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
</note>

The first line is the XML declaration. It defines the XML version (1.0). The next line describes the root
element of the document (like saying: "this document is a note"). The next 4 lines describe 4 child
elements of the root (to, from, heading, and body) and finally the last line defines the end of the root
element.

XML Versions

For more notes visit https://collegenote.pythonanywhere.com

There are two current versions of XML. The first (XML 1.0) was initially defined in 1998. It has undergone
minor revisions since then, without being given a new version number, and is currently in its fifth
edition, as published on November 26, 2008. It is widely implemented and still recommended for
general use. The second (XML 1.1) was initially published on February 4, 2004, the same day as XML 1.0
Third Edition, and is currently in its second edition, as published on August 16, 2006. There has been
discussion of an XML 2.0, although no organization has announced plans for work on such a project.

The Difference between XML and HTML
XML is not replacement for HTML rather both were designed with different goals:

 XML was designed to describe data, with focus on what data is

 HTML was designed to display data, with focus on how data looks

 HTML is about displaying information, while XML is about carrying information.

XML Does Not DO Anything
Maybe it is a little hard to understand, but XML does not DO anything. The very first example above is a
note to Tove, from Jani, stored as XML:

<?xml version="1.0" encoding="UTF-8"?>
<messages>

<note>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
</note>
<note>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
</note>

</messages>

The note above is quite self descriptive. It has sender and receiver information, it also has a heading and
a message body. But still, this XML document does not DO anything. It is just information wrapped in
tags. Someone must write a piece of software to send, receive or display it.

With XML You Invent Your Own Tags
The tags in the example above (like <to> and <from>) are not defined in any XML standard. These tags
are "invented" by the author of the XML document. I.e. the XML language has no predefined tags.

How Can XML be used? [Benefits]
XML is used in many aspects of web development, often to simplify data storage and sharing.

1. XML Separates Data from HTML
2. XML Simplifies Data Sharing
3. XML Simplifies Data Transport

For more notes visit https://collegenote.pythonanywhere.com

4. XML Simplifies Platform Changes
5. XML Makes Your Data More Available on diverse applications
6. Internet Languages Written in XML: Several Internet languages are written in XML. Here are

some examples:
 XHTML
 XML Schema
 SVG
 WSDL
 RSS

XML Tree [XML Documents Form a Tree Structure]
XML documents form a tree structure that starts at "the root" and branches to "the leaves". XML

documents must contain a root element. This element is "the parent" of all other elements. The elements in
an XML document form a document tree. The tree starts at the root and branches to the lowest level of the
tree.
All elements can have sub elements (child elements):
<root>
 <child>
 <subchild>.....</subchild>
 </child>
</root>
The terms parent, child, and sibling are used to describe the relationships between elements. Parent
elements have children. Children on the same level are called siblings (brothers or sisters). All elements can
have text content and attributes (just like in HTML).

Example:

The image above represents one book in the XML below:
<bookstore>
 <book category="COOKING">
 <title lang="en">Everyday Italian</title>
 <author>Giada De Laurentiis</author>
 <year>2005</year>
 <price>30.00</price>

For more notes visit https://collegenote.pythonanywhere.com

 </book>
 <book category="CHILDREN">
 <title lang="en">Harry Potter</title>
 <author>J K. Rowling</author>
 <year>2005</year>
 <price>29.99</price>
 </book>
 <book category="WEB">
 <title lang="en">Learning XML</title>
 <author>Erik T. Ray</author>
 <year>2003</year>
 <price>39.95</price>
 </book>
</bookstore>

The root element in the example is <bookstore>. All <book> elements in the document are contained
within <bookstore>. The <book> element has 4 children: <title>,< author>, <year>, <price>.

XML Syntax
The syntax rules of XML are very simple and logical. The rules are easy to learn, and easy to use.

All XML Elements Must Have a Closing Tag: In HTML, some elements do not have to have a closing
tag:
<p>This is a paragraph.

In XML, it is illegal to omit the closing tag. All elements must have a closing tag:
<p>This is a paragraph.</p>

XML Tags are Case Sensitive: XML tags are case sensitive. The tag <Letter> is different from the tag
<letter>.

XML Elements Must be Properly Nested: In HTML, you might see improperly nested elements:
<i>This text is bold and italic</i>
In XML, all elements must be properly nested within each other:
<i>This text is bold and italic</i>

XML Documents Must Have a Root Element: XML documents must contain one element that is
the parent of all other elements. This element is called the root element.
<root>
 <child>
 <subchild>.....</subchild>
 </child>
</root>

XML Attribute Values Must be Quoted: XML elements can have attributes in name/value pairs just
like in HTML.
In XML, the attribute values must always be quoted.

For more notes visit https://collegenote.pythonanywhere.com

Study the two XML documents below. The first one is incorrect, the second is correct:

<note date=12/11/2007>

<to>Tove</to>
<from>Jani</from>

</note>

<note date="12/11/2007">
 <to>Tove</to>
 <from>Jani</from>
</note>

The error in the first document is that the date attribute in the note element is not quoted.

Entity References
Some characters have a special meaning in XML. If you place a character like "<" inside an XML element,
it will generate an error because the parser interprets it as the start of a new element. This will generate
an XML error:

<message>if salary < 1000 then</message>
To avoid this error, replace the "<" character with an entity reference:
<message>if salary < 1000 then</message>

There are 5 predefined entity references in XML:

< < less than

> > greater than

& & ampersand

' ' apostrophe

" " quotation mark

Note: Only the characters "<" and "&" are strictly illegal in XML. The greater than character is legal, but
it is a good habit to replace it.

Comments in XML
The syntax for writing comments in XML is similar to that of HTML.
<!-- This is a comment -->

White-space is Preserved in XML
HTML truncates multiple white-space characters to one single white-space:

HTML: Hello Tove

Output: Hello Tove

For more notes visit https://collegenote.pythonanywhere.com

With XML, the white-space in a document is not truncated.

XML Stores New Line as LF

 Windows applications store a new line as: carriage return and line feed (CR+LF).

 Unix and Mac OSX uses LF.

 Old Mac systems uses CR.

 XML stores a new line as LF.

Well Formed XML
XML documents that conform to the syntax rules above are said to be "Well Formed" XML documents.

XML Elements
An XML document contains XML Elements.

What is an XML Element?
An XML element is everything from (including) the element's start tag to (including) the element's end
tag.
An element can contain:

 other elements

 text

 attributes

 or a mix of all of the above...

<bookstore>
 <book category="CHILDREN">
 <title>Harry Potter</title>
 <author>J K. Rowling</author>
 <year>2005</year>
 <price>29.99</price>
 </book>
 <book category="WEB">
 <title>Learning XML</title>
 <author>Erik T. Ray</author>
 <year>2003</year>
 <price>39.95</price>
 </book>
</bookstore>

In the example above, <bookstore> and <book> have element contents, because they contain other
elements. <book> also has an attribute (category="CHILDREN"). <title>, <author>, <year>, and <price>
have text content because they contain text.

Empty XML Elements
An alternative syntax can be used for XML elements with no content: Instead of writing a book element
(with no content) like this:

For more notes visit https://collegenote.pythonanywhere.com

<book></book>
It can be written like this:
<book />
This sort of element syntax is called self-closing.

XML Attributes

XML elements can have attributes, just like HTML. Attributes provide additional information about an
element. In HTML, attributes provide additional information about elements:

Attributes often provide information that is not a part of the data. In the example below, the file type is
irrelevant to the data, but can be important to the software that wants to manipulate the element:
<file type="gif">computer.gif</file>

XML Elements vs. Attributes
Take a look at these examples:
<person sex="female">
 <firstname>Anna</firstname>
 <lastname>Smith</lastname>
</person>

<person>
 <sex>female</sex>
 <firstname>Anna</firstname>
 <lastname>Smith</lastname>
</person>
In the first example sex is an attribute. In the last, sex is an element. Both examples provide the same
information. There are no rules about when to use attributes or when to use elements. Attributes are
handy in HTML. In XML, my advice () is to avoid them. Use elements instead this makes parsing xml
uniform.

My proper way
The following three XML documents contain exactly the same information:
A date attribute is used in the first example:
<note date="10/01/2008">
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
</note>
A date element is used in the second example:
<note>
 <date>10/01/2008</date>
 <to>Tove</to>
 <from>Jani</from>

For more notes visit https://collegenote.pythonanywhere.com

 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
</note>
An expanded date element is used in the third: (THIS IS MY FAVORITE):
<note>
 <date>
 <day>10</day>
 <month>01</month>
 <year>2008</year>
 </date>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
</note>

Avoid XML Attributes?
Some of the problems with using attributes are:

 attributes cannot contain multiple values (elements can)

 attributes cannot contain tree structures (elements can)

 attributes are not easily expandable (for future changes)

Attributes are difficult to read and maintain. Use elements for data. Use attributes for information that
is not relevant to the data.

Don't end up like this:
<note day="10" month="01" year="2008" to="Tove" from="Jani" heading="Reminder" body="Don't
forget me this weekend!">
</note>

XML Attributes for Metadata
Sometimes ID references are assigned to elements. These IDs can be used to identify XML elements in
much the same way as the id attribute in HTML. This example demonstrates this:
<messages>
 <note id="501">
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
 </note>
 <note id="502">
 <to>Jani</to>
 <from>Tove</from>
 <heading>Re: Reminder</heading>
 <body>I will not</body>
 </note>
</messages>

For more notes visit https://collegenote.pythonanywhere.com

The id attributes above are for identifying the different notes. It is not a part of the note itself. What I'm
trying to say here is that metadata (data about data) should be stored as attributes, and the data itself
should be stored as elements.

XML Namespaces
XML Namespaces provide a method to avoid element name conflicts.

Name Conflicts
In XML, element names are defined by the developer. This often results in a conflict when trying to mix
XML documents from different XML applications.
This XML carries HTML table information:
<table>
 <tr>
 <td>Apples</td>
 <td>Bananas</td>
 </tr>
</table>
This XML carries information about a table (a piece of furniture):
<table>
 <name>African Coffee Table</name>
 <width>80</width>
 <length>120</length>
</table>

If these XML fragments were added together, there would be a name conflict. Both contain a <table>
element, but the elements have different content and meaning. A user or an XML application will not
know how to handle these differences.

Solving the Name Conflict Using a Prefix
Name conflicts in XML can easily be avoided using a name prefix. This XML carries information about an
HTML table, and a piece of furniture:
<h:table>
 <h:tr>
 <h:td>Apples</h:td>
 <h:td>Bananas</h:td>
 </h:tr>
</h:table>

<f:table>
 <f:name>African Coffee Table</f:name>
 <f:width>80</f:width>
 <f:length>120</f:length>
</f:table>

For more notes visit https://collegenote.pythonanywhere.com

Default Namespaces
Defining a default namespace for an element saves us from using prefixes in all the child elements. It has
the following syntax:

xmlns="namespaceURI"

This XML carries HTML table information:
<table xmlns="http://www.w3.org/TR/html4/">
 <tr>
 <td>Apples</td>
 <td>Bananas</td>
 </tr>
</table>
This XML carries information about a piece of furniture:
<table xmlns="http://www.w3schools.com/furniture">
 <name>African Coffee Table</name>
 <width>80</width>
 <length>120</length>
</table>

XML Encoding
XML documents can contain international characters, like Norwegian or French etc. To avoid errors, you
should specify the encoding used, or save your XML files as UTF-8.

Character Encoding
Character encoding defines a unique binary code for each different character used in a document. In
computer terms, character encoding are also called character set, character map, code set, and code
page.

Unicode
Unicode is an industry standard for character encoding of text documents. It defines (nearly) every
possible international character by a name and a number.
Unicode has two variants: UTF-8 and UTF-16.
UTF = Universal character set Transformation Format.
UTF-8 uses 1 byte (8-bits) to represent characters in the ASCII set, and two or three bytes for the rest.
UTF-16 uses 2 bytes (16 bits) for most characters, and four bytes for the rest.

UTF-8 - The Web Standard
UTF-8 is the standard character encoding on the web.
UTF-8 is the default character encoding for HTML5, CSS, JavaScript, PHP, SQL, and XML.

XML Encoding
The first line in an XML document is called the prolog:
<?xml version="1.0"?>
The prolog is optional. Normally it contains the XML version number. It can also contain information
about the encoding used in the document. This prolog specifies UTF-8 encoding:

For more notes visit https://collegenote.pythonanywhere.com

<?xml version="1.0" encoding="UTF-8"?>

The XML standard states that all XML software must understand both UTF-8 and UTF-16. UTF-8 is the
default for documents without encoding information. In addition, most XML software systems
understand encodings like ISO-8859-1, Windows-1252, and ASCII.

XML Errors
Most often, XML documents are created on one computer, uploaded to a server on a second computer,
and displayed by a browser on a third computer. If the encoding is not correctly interpreted by all the
three computers, the browser might display meaningless text, or you might get an error message.

DTD (Document Type Definition)
The purpose of a DTD (Document Type Definition) is to define the legal building blocks of an XML
document. A DTD defines the document structure with a list of legal elements and attributes.

Why Use a DTD?
 With a DTD, each of your XML files can carry a description of its own format.

 With a DTD, independent groups of people can agree to use a standard DTD for interchanging
data.

 Your application can use a standard DTD to verify that the data you receive from the outside
world is valid.

 You can also use a DTD to verify your own data.

A DTD can be declared inline inside an XML document, or as an external reference.

Internal DTD Declaration
If the DTD is declared inside the XML file, it should be wrapped in a DOCTYPE definition with the
following syntax:

<!DOCTYPE root-element [element-declarations]>

Example XML document with an internal DTD:
<?xml version="1.0"?>
<!DOCTYPE note [
<!ELEMENT note (to,from,heading,body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>
]>
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend</body>
</note>

For more notes visit https://collegenote.pythonanywhere.com

The DTD above is interpreted like this:
!DOCTYPE note defines that the root element of this document is note
!ELEMENT note defines that the note element contains four elements: "to,from,heading,body"
!ELEMENT to defines the to element to be of type "#PCDATA"
!ELEMENT from defines the from element to be of type "#PCDATA"
!ELEMENT heading defines the heading element to be of type "#PCDATA"
!ELEMENT body defines the body element to be of type "#PCDATA"

External DTD Declaration
If the DTD is declared in an external file, it should be wrapped in a DOCTYPE definition with the following
syntax:
<!DOCTYPE root-element SYSTEM "filename">
This is the same XML document as above, but with an external DTD:
<?xml version="1.0"?>
<!DOCTYPE note SYSTEM "note.dtd">
<note>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
</note>
And this is the file "note.dtd" which contains the DTD:
<!ELEMENT note (to,from,heading,body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>

The Building Blocks of XML Documents
Seen from a DTD point of view, all XML documents (and HTML documents) are made up by the following
building blocks:

 Elements

 Attributes

 Entities

 PCDATA

 CDATA
PCDATA
PCDATA means parsed character data. Think of character data as the text found between the start tag
and the end tag of an XML element. PCDATA is text that WILL be parsed by a parser. The text will be
examined by the parser for entities and markup. Tags inside the text will be treated as markup and
entities will be expanded. However, parsed character data should not contain any &, <, or > characters;
these need to be represented by the & < and > entities, respectively.

CDATA
CDATA means character data. CDATA is text that will NOT be parsed by a parser. Tags inside the text
will NOT be treated as markup and entities will not be expanded.

For more notes visit https://collegenote.pythonanywhere.com

DTD Elements
In a DTD, elements are declared with an ELEMENT declaration.

Declaring Elements
In a DTD, XML elements are declared with an element declaration with the following syntax:
<!ELEMENT element-name category>
or
<!ELEMENT element-name (element-content)>

Empty Elements
Empty elements are declared with the category keyword EMPTY:
<!ELEMENT element-name EMPTY>

Example:
<!ELEMENT br EMPTY>

XML example:

Elements with Parsed Character Data
Elements with only parsed character data are declared with #PCDATA inside parentheses:
<!ELEMENT element-name (#PCDATA)>
Example:
<!ELEMENT from (#PCDATA)>

Elements with any Contents
Elements declared with the category keyword ANY, can contain any combination of parsable data:
<!ELEMENT element-name ANY>

Example:
<!ELEMENT note ANY>

Elements with Children (sequences)
Elements with one or more children are declared with the name of the children elements inside
parentheses:
<!ELEMENT element-name (child1)>
or
<!ELEMENT element-name (child1,child2,...)>

Example:
<!ELEMENT note (to,from,heading,body)>

When children are declared in a sequence separated by commas, the children must appear in the same
sequence in the document. In a full declaration, the children must also be declared, and the children can
also have children. The full declaration of the "note" element is:
<!ELEMENT note (to,from,heading,body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>

For more notes visit https://collegenote.pythonanywhere.com

<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>

Declaring Only One Occurrence of an Element
<!ELEMENT element-name (child-name)>

Example:
<!ELEMENT note (message)>

The example above declares that the child element "message" must occur once, and only once inside
the "note" element.

Declaring Minimum One Occurrence of an Element
<!ELEMENT element-name (child-name+)>

Example:
<!ELEMENT note (message+)>

The + sign in the example above declares that the child element "message" must occur one or more
times inside the "note" element.

Declaring Zero or More Occurrences of an Element
<!ELEMENT element-name (child-name*)>

Example:
<!ELEMENT note (message*)>

The * sign in the example above declares that the child element "message" can occur zero or more
times inside the "note" element.

Declaring Zero or One Occurrences of an Element
<!ELEMENT element-name (child-name?)>

Example:
<!ELEMENT note (message?)>

The ? sign in the example above declares that the child element "message" can occur zero or one time
inside the "note" element.

Declaring either/or Content
Example:
<!ELEMENT note (to,from,header,(message|body))>

The example above declares that the "note" element must contain a "to" element, a "from" element, a
"header" element, and either a "message" or a "body" element.

Declaring Mixed Content

For more notes visit https://collegenote.pythonanywhere.com

Example:
<!ELEMENT note (#PCDATA|to|from|header|message)*>
The example above declares that the "note" element can contain zero or more occurrences of parsed
character data, "to", "from", "header", or "message" elements.

DTD Attributes
In the DTD, XML element attributes are declared with an ATTLIST declaration. An attribute declaration
has the following syntax:

<!ATTLIST element-name attribute-name attribute-type default-value>

As you can see from the syntax above, the ATTLIST declaration defines the element which can have the
attribute, the name of the attribute, the type of the attribute, and the default attribute value.
The attribute-type can have the following values:

Value Explanation

CDATA The value is character data

(eval|eval|..) The value must be an enumerated value

ID The value is an unique id

IDREF The value is the id of another element

IDREFS The value is a list of other ids

NMTOKEN The value is a valid XML name

NMTOKENS The value is a list of valid XML names

ENTITY The value is an entity

ENTITIES The value is a list of entities

NOTATION The value is a name of a notation

xml: The value is predefined

The attribute-default-value can have the following values:

Value Explanation

#DEFAULT value The attribute has a default value

#REQUIRED The attribute value must be included in the element

#IMPLIED The attribute does not have to be included

#FIXED value The attribute value is fixed

Attribute declaration example

DTD example:
<!ELEMENT square EMPTY>
 <!ATTLIST square width CDATA "0">

XML example:
<square width="100"></square>

For more notes visit https://collegenote.pythonanywhere.com

In the above example the element square is defined to be an empty element with the attributes width
of type CDATA. The width attribute has a default value of 0.

Default attributes value

Syntax:
<!ATTLIST element-name attribute-name CDATA "default-value">

DTD example:
<!ATTLIST payment type CDATA "check">

XML example:
<payment type="check">

Specifying a default value for an attribute, assures that the attribute will get a value even if the author of
the XML document didn't include it.

Implied attribute

Syntax:
<!ATTLIST element-name attribute-name attribute-type #IMPLIED>
DTD example:
<!ATTLIST contact fax CDATA #IMPLIED>

XML example:
<contact fax="555-667788">

Use an implied attribute if you don't want to force the author to include an attribute and you don't have
an option for a default value either.

Required attribute

Syntax:
<!ATTLIST element-name attribute_name attribute-type #REQUIRED>
DTD example:
<!ATTLIST person number CDATA #REQUIRED>

XML example:
<person number="5677">

Use a required attribute if you don't have an option for a default value, but still want to force the
attribute to be present.

Fixed attribute value

Syntax:
<!ATTLIST element-name attribute-name attribute-type #FIXED "value">
DTD example:
<!ATTLIST sender company CDATA #FIXED "Microsoft">

For more notes visit https://collegenote.pythonanywhere.com

XML example:
<sender company="Microsoft">

Use a fixed attribute value when you want an attribute to have a fixed value without allowing the author
to change it. If an author includes another value, the XML parser will return an error.

Enumerated attribute values

Syntax:
<!ATTLIST element-name attribute-name (eval|eval|..) default-value>
DTD example:
<!ATTLIST payment type (check|cash) "cash">

XML example:
<payment type="check">
or
<payment type="cash">

Use enumerated attribute values when you want the attribute values to be one of a fixed set of legal
values.

DTD Examples
1. Newspaper article DTD

<!DOCTYPE NEWSPAPER [

<!ELEMENT NEWSPAPER (ARTICLE+)>
<!ELEMENT ARTICLE (HEADLINE,BYLINE,LEAD,BODY,NOTES)>
<!ELEMENT HEADLINE (#PCDATA)>
<!ELEMENT BYLINE (#PCDATA)>
<!ELEMENT LEAD (#PCDATA)>
<!ELEMENT BODY (#PCDATA)>
<!ELEMENT NOTES (#PCDATA)>

<!ATTLIST ARTICLE AUTHOR CDATA #REQUIRED>
<!ATTLIST ARTICLE EDITOR CDATA #IMPLIED>
<!ATTLIST ARTICLE DATE CDATA #IMPLIED>
<!ATTLIST ARTICLE EDITION CDATA #IMPLIED>

<!ENTITY NEWSPAPER "Vervet Logic Times">
<!ENTITY PUBLISHER "Vervet Logic Press">
<!ENTITY COPYRIGHT "Copyright 1998 Vervet Logic Press">

]>
2. TV schedule DTD

<!DOCTYPE TVSCHEDULE [

For more notes visit https://collegenote.pythonanywhere.com

<!ELEMENT TVSCHEDULE (CHANNEL+)>
<!ELEMENT CHANNEL (BANNER,DAY+)>
<!ELEMENT BANNER (#PCDATA)>
<!ELEMENT DAY (DATE,(HOLIDAY|PROGRAMSLOT+)+)>
<!ELEMENT HOLIDAY (#PCDATA)>
<!ELEMENT DATE (#PCDATA)>
<!ELEMENT PROGRAMSLOT (TIME,TITLE,DESCRIPTION?)>
<!ELEMENT TIME (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT DESCRIPTION (#PCDATA)>

<!ATTLIST TVSCHEDULE NAME CDATA #REQUIRED>
<!ATTLIST CHANNEL CHAN CDATA #REQUIRED>
<!ATTLIST PROGRAMSLOT VTR CDATA #IMPLIED>
<!ATTLIST TITLE RATING CDATA #IMPLIED>
<!ATTLIST TITLE LANGUAGE CDATA #IMPLIED>
]>

XML Schema (XSD)
XML Schema is an XML-based alternative to DTD which describes the structure of an XML document.
The XML Schema language is also referred to as XML Schema Definition (XSD). XML Schema became a
W3C’s recommendation in 02. May 2001.

What is an XML Schema?
The purpose of an XML Schema is to define the legal building blocks of an XML document, just like a
DTD.
An XML Schema:

 defines elements that can appear in a document

 defines attributes that can appear in a document

 defines which elements are child elements

 defines the order of child elements

 defines the number of child elements

 defines whether an element is empty or can include text

 defines data types for elements and attributes

 defines default and fixed values for elements and attributes

XML Schemas are the Successors of DTDs
XML Schemas are (and will be) used in most Web applications as a replacement for DTDs. Reasons for
replacement include: extensible to future additions, richer and more powerful than DTDs, support data
types and support namespaces.

Example before discussion:
A Simple XML Document
Look at this simple XML document called "note.xml":
<?xml version="1.0"?>
<note>

For more notes visit https://collegenote.pythonanywhere.com

 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
</note>
We have already written a DTD for this xml. Its turn now for XSD:
The following example is an XML Schema file called "note.xsd" that defines the elements of the XML
document above ("note.xml"):
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.a.com"
xmlns=http://www.a.com” elementFormDefault="qualified">

<xs:element name="note">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="to" type="xs:string"/>
 <xs:element name="from" type="xs:string"/>
 <xs:element name="heading" type="xs:string"/>
 <xs:element name="body" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

</xs:schema>

Let’s elaborate XSD document above (note.xsd):
The <schema> Element
The <schema> element is the root element of every XML Schema:

<?xml version="1.0"?>
<xs:schema>
 ...
 ...
</xs:schema>

The <schema> element may contain some attributes. A schema declaration often looks something like
this:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.a.com"
xmlns="http://www.a.com"
elementFormDefault="qualified">
 ...
 ...
</xs:schema>

The following fragment:
xmlns:xs="http://www.w3.org/2001/XMLSchema" indicates that the elements and data types used in
the schema come from the "http://www.w3.org/2001/XMLSchema" namespace. It also specifies that

For more notes visit https://collegenote.pythonanywhere.com

the elements and data types that come from the "http://www.w3.org/2001/XMLSchema" namespace
should be prefixed with xs:

This fragment:
targetNamespace="http://www.a.com" indicates that the elements defined by this schema (note, to,
from, heading, body.) come from the "http://www.a.com" namespace.

This fragment:
xmlns="http://www.w3schools.com" indicates that the default namespace is "http://www.a.com".

This fragment:
elementFormDefault="qualified" indicates that any elements used by the XML instance document
which were declared in this schema must be namespace qualified.

Referencing a Schema in an XML Document
This XML document has a reference to an XML Schema:

<?xml version="1.0"?>
<note xmlns="http://www.a.com"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.a.com note.xsd">

<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>

The following fragment:
xmlns="http://www.a.com" specifies the default namespace declaration. This declaration tells the
schema-validator that all the elements used in this XML document are declared in the
"http://www.a.com" namespace.
Once you have the XML Schema Instance namespace available:
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance", you can use the schemaLocation
attribute. This attribute has two values, separated by a space. The first value is the namespace to use.
The second value is the location of the XML schema to use for that namespace:

xsi:schemaLocation="http://www.w3schools.com note.xsd"

XSD: Simple Types
XML Schemas define the elements of your XML files. A simple element is an XML element that contains

only text. It cannot contain any other elements or attributes.
However, the "only text" restriction is quite misleading. The text can be of many different types. It can
be one of the types included in the XML Schema definition (boolean, string, date, etc.), or it can be a
custom type that you can define yourself.
You can also add restrictions (facets) to a data type in order to limit its content, or you can require the
data to match a specific pattern.

Defining a Simple Element
The syntax for defining a simple element is:

For more notes visit https://collegenote.pythonanywhere.com

<xs:element name="xxx" type="yyy"/>
where xxx is the name of the element and yyy is the data type of the element.

XML Schema has a lot of built-in data types. The most common types are:

xs:string
xs:decimal
xs:integer
xs:boolean
xs:date
xs:time

Example
Here are some XML elements:
<lastname>Refsnes</lastname>
<age>36</age>
<dateborn>1970-03-27</dateborn>

And here are the corresponding simple element definitions:
<xs:element name="lastname" type="xs:string"/>
<xs:element name="age" type="xs:integer"/>
<xs:element name="dateborn" type="xs:date"/>

Default and Fixed Values for Simple Elements
Simple elements may have a default value OR a fixed value specified. A default value is automatically
assigned to the element when no other value is specified. In the following example the default value is
"red":
<xs:element name="color" type="xs:string" default="red"/>

A fixed value is also automatically assigned to the element, and you cannot specify another value. In the
following example the fixed value is "red":
<xs:element name="color" type="xs:string" fixed="red"/>

XSD Attribute
Simple elements cannot have attributes. If an element has attributes, it is considered to be of a complex
type. But the attribute itself is always declared as a simple type.

The syntax for defining an attribute is:

<xs:attribute name="xxx" type="yyy"/>
where xxx is the name of the attribute and yyy specifies the data type of the attribute.

Example
Here is an XML element with an attribute:

<lastname lang="EN">Smith</lastname>
And here is the corresponding attribute definition:

<xs:attribute name="lang" type="xs:string"/>

Default and Fixed Values for Attributes

For more notes visit https://collegenote.pythonanywhere.com

Attributes may have a default value OR a fixed value specified. A default value is automatically assigned
to the attribute when no other value is specified. In the following example the default value is "EN":

<xs:attribute name="lang" type="xs:string" default="EN"/>
A fixed value is also automatically assigned to the attribute, and you cannot specify another value. In the
following example the fixed value is "EN":

<xs:attribute name="lang" type="xs:string" fixed="EN"/>

Optional and Required Attributes
Attributes are optional by default. To specify that the attribute is required, use the "use" attribute:

<xs:attribute name="lang" type="xs:string" use="required"/>

Restrictions on Content
When an XML element or attribute has a data type defined, it puts restrictions on the element's or
attribute's content. If an XML element is of type "xs:date" and contains a string like "Hello World", the
element will not validate. With XML Schemas, you can also add your own restrictions to your XML
elements and attributes. These restrictions are called facets.

Facets/XML Restrictions
Restrictions are used to define acceptable values for XML elements or attributes. Restrictions on XML
elements are called facets.

Restrictions for Datatypes

Constraint Description

enumeration Defines a list of acceptable values

fractionDigits Specifies the maximum number of decimal places allowed. Must be equal to or greater
than zero

Length Specifies the exact number of characters or list items allowed. Must be equal to or
greater than zero

maxExclusive Specifies the upper bounds for numeric values (the value must be less than this value)

maxInclusive Specifies the upper bounds for numeric values (the value must be less than or equal to
this value)

maxLength Specifies the maximum number of characters or list items allowed. Must be equal to or
greater than zero

minExclusive Specifies the lower bounds for numeric values (the value must be greater than this
value)

minInclusive Specifies the lower bounds for numeric values (the value must be greater than or equal
to this value)

For more notes visit https://collegenote.pythonanywhere.com

minLength Specifies the minimum number of characters or list items allowed. Must be equal to or
greater than zero

Pattern Defines the exact sequence of characters that are acceptable

totalDigits Specifies the exact number of digits allowed. Must be greater than zero

Whitespace Specifies how white space (line feeds, tabs, spaces, and carriage returns) is handled

Restrictions on Values
<xs:element name="age">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="120"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Restrictions on a Set of Values
To limit the content of an XML element to a set of acceptable values, we would use the enumeration
constraint. The example below defines an element called "car" with a restriction. The only acceptable
values are: Audi, Golf, BMW:

<xs:element name="car">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Audi"/>
 <xs:enumeration value="Golf"/>
 <xs:enumeration value="BMW"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Restrictions on a Series of Values
The example below defines an element called "letter" with a restriction. The only acceptable value is
ONE of the LOWERCASE letters from a to z:
<xs:element name="letter">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="[a-z]"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>
Element "initials" accepts value is THREE of the UPPERCASE letters from a to z:
<xs:element name="initials">
 …

For more notes visit https://collegenote.pythonanywhere.com

 <xs:pattern value="[A-Z][A-Z][A-Z]"/>
 …
 </xs:element>

Other Restrictions on a Series of Values
The example below defines an element called "letter" with a restriction. The acceptable value is zero or
more occurrences of lowercase letters from a to z:
<xs:element name="letter">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="([a-z])*"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>
The next example also defines an element called "letter" with a restriction. The acceptable value is one
or more pairs of letters, each pair consisting of a lower case letter followed by an upper case letter. For
example, "sToP" will be validated by this pattern, but not "Stop" or "STOP" or "stop":
<xs:element name="letter">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="([a-z][A-Z])+"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

The next example defines an element called "gender" with a restriction. The only acceptable value is
male OR female:
<xs:element name="gender">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="male|female"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>
The next example defines an element called "password" with a restriction. There must be exactly eight
characters in a row and those characters must be lowercase or uppercase letters from a to z, or a
number from 0 to 9:
<xs:element name="password">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="[a-zA-Z0-9]{8}"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Restrictions on Whitespace Characters

For more notes visit https://collegenote.pythonanywhere.com

To specify how whitespace characters should be handled, we would use the whiteSpace constraint. This
example defines an element called "address" with a restriction. The whiteSpace constraint is set to
"preserve", which means that the XML processor WILL NOT remove any white space characters:
<xs:element name="address">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:whiteSpace value="preserve"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>
The whiteSpace constraint is set to "replace", which means that the XML processor WILL REPLACE all
white space characters (line feeds, tabs, spaces, and carriage returns) with spaces:
<xs:element name="address">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:whiteSpace value="replace"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>
This example also defines an element called "address" with a restriction. The whiteSpace constraint is
set to "collapse", which means that the XML processor WILL REMOVE all white space characters (line
feeds, tabs, spaces, carriage returns are replaced with spaces, leading and trailing spaces are removed,
and multiple spaces are reduced to a single space):
<xs:element name="address">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:whiteSpace value="collapse"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Restrictions on Length
To limit the length of a value in an element, we would use the length, maxLength, and minLength
constraints.
<xs:element name="password">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:length value="8"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>
This example defines another element called "password" with a restriction. The value must be minimum
five characters and maximum eight characters:
<xs:element name="password">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="5"/>
 <xs:maxLength value="8"/>

For more notes visit https://collegenote.pythonanywhere.com

 </xs:restriction>
 </xs:simpleType>
</xs:element>

XSD Complex Elements
A complex element contains other elements and/or attributes.
What is a Complex Element?
A complex element is an XML element that contains other elements and/or attributes.
There are four kinds of complex elements:

 empty elements
<product pid="1345"/>

 elements that contain only other elements
<employee>
 <firstname>John</firstname>
 <lastname>Smith</lastname>
</employee>

 elements that contain only text
<food type="dessert">Ice cream</food>

 elements that contain both other elements and text
<description>
 It happened on <date lang="norwegian">03.03.99</date>
</description>

Hey! Each of these elements may contain attributes as well!

How to Define a Complex Element
Look at this complex XML element, "employee", which contains only other elements:
<employee>
 <firstname>John</firstname>
 <lastname>Smith</lastname>
</employee>
We can define a complex element in an XML Schema two different ways:
1. The "employee" element can be declared directly by naming the element, like this:
<xs:element name="employee">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
If you use the method described above, only the "employee" element can use the specified complex
type. Note that the child elements, "firstname" and "lastname", are surrounded by the <sequence>
indicator. This means that the child elements must appear in the same order as they are declared.

For more notes visit https://collegenote.pythonanywhere.com

2. The "employee" element can have a type attribute that refers to the name of the complex type to
use:
<xs:element name="employee" type="personinfo"/>
<xs:complexType name="personinfo">
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 </xs:sequence>
</xs:complexType>
If you use the method described above, several elements can refer to the same complex type, like this:
<xs:element name="employee" type="personinfo"/>
<xs:element name="student" type="personinfo"/>
<xs:element name="member" type="personinfo"/>

<xs:complexType name="personinfo">
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 </xs:sequence>
</xs:complexType>
You can also base a complex element on an existing complex element and add some elements, like this:
<xs:element name="employee" type="fullpersoninfo"/>

<xs:complexType name="personinfo">
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="fullpersoninfo">
 <xs:complexContent>
 <xs:extension base="personinfo">
 <xs:sequence>
 <xs:element name="address" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 <xs:element name="country" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Complex Types with Mixed Content
An XML element, "letter” that contains both text and other elements:

<letter>
 Dear Mr.<name>John Smith</name>.
 Your order <orderid>1032</orderid>

For more notes visit https://collegenote.pythonanywhere.com

 will be shipped on <shipdate>2001-07-13</shipdate>.
</letter>

The following schema declares the "letter" element:
<xs:element name="letter">
 <xs:complexType mixed="true">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="orderid" type="xs:positiveInteger"/>
 <xs:element name="shipdate" type="xs:date"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Hey! To enable character data to appear between the child-elements of "letter", the mixed attribute
must be set to "true". The <xs:sequence> tag means that the elements defined (name, orderid and
shipdate) must appear in that order inside a "letter" element.

We could also give the complexType element a name, and let the "letter" element have a type attribute
that refers to the name of the complexType (if you use this method, several elements can refer to the
same complex type):

<xs:element name="letter" type="lettertype"/>

<xs:complexType name="lettertype" mixed="true">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="orderid" type="xs:positiveInteger"/>
 <xs:element name="shipdate" type="xs:date"/>
 </xs:sequence>
</xs:complexType>

XSD Indicators
We can control HOW elements are to be used in documents with indicators. There are seven indicators:

 Order indicators:
o All
o Choice
o Sequence

 Occurrence indicators:
o maxOccurs
o minOccurs

 Group indicators:
o Group name
o attributeGroup name

Order Indicators
Order indicators are used to define the order of the elements.
All Indicator

For more notes visit https://collegenote.pythonanywhere.com

The <all> indicator specifies that the child elements can appear in any order, and that each child
element must occur only once:
<xs:element name="person">
 <xs:complexType>
 <xs:all>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 </xs:all>
 </xs:complexType>
</xs:element>

Choice Indicator
The <choice> indicator specifies that either one child element or another can occur:
<xs:element name="person">
 <xs:complexType>
 <xs:choice>
 <xs:element name="employee" type="employee"/>
 <xs:element name="member" type="member"/>
 </xs:choice>
 </xs:complexType>
</xs:element>
Sequence Indicator
The <sequence> indicator specifies that the child elements must appear in a specific order:
<xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Occurrence Indicators
Occurrence indicators are used to define how often an element can occur.

maxOccurs Indicator
The <maxOccurs> indicator specifies the maximum number of times an element can occur:
<xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="full_name" type="xs:string"/>
 <xs:element name="child_name" type="xs:string" maxOccurs="10"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
The example above indicates that the "child_name" element can occur a minimum of one time (the
default value for minOccurs is 1) and a maximum of ten times in the "person" element.

For more notes visit https://collegenote.pythonanywhere.com

minOccurs Indicator
The <minOccurs> indicator specifies the minimum number of times an element can occur:
<xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="full_name" type="xs:string"/>
 <xs:element name="child_name" type="xs:string"
 maxOccurs="10" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
The example above indicates that the "child_name" element can occur a minimum of zero times and a
maximum of ten times in the "person" element.

Hey! For all "Order" and "Group" indicators (any, all, choice, sequence, group name, and group
reference) the default value for maxOccurs and minOccurs is 1.

Hey! To allow an element to appear an unlimited number of times, use the maxOccurs="unbounded"
statement:

A working example:
An XML file called "Myfamily.xml":
<?xml version="1.0" encoding="UTF-8"?>
<persons xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="family.xsd">

<person>
 <full_name>Hege Refsnes</full_name>
 <child_name>Cecilie</child_name>
</person>

<person>
 <full_name>Tove Refsnes</full_name>
 <child_name>Hege</child_name>
 <child_name>Stale</child_name>
 <child_name>Jim</child_name>
 <child_name>Borge</child_name>
</person>

<person>
 <full_name>Stale Refsnes</full_name>
</person>

</persons>

The XML file above contains a root element named "persons". Inside this root element we have defined
three "person" elements. Each "person" element must contain a "full_name" element and it can contain
up to five "child_name" elements.

For more notes visit https://collegenote.pythonanywhere.com

Here is the schema file "family.xsd":
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="persons">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="person" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="full_name" type="xs:string"/>
 <xs:element name="child_name" type="xs:string"
 minOccurs="0" maxOccurs="5"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

</xs:schema>

Group Indicators
Group indicators are used to define related sets of elements.

Element Groups
Element groups are defined with the group declaration, like this:
<xs:group name="groupname">
 ...
</xs:group>
You must define an all, choice, or sequence element inside the group declaration. The following example
defines a group named "persongroup", that defines a group of elements that must occur in an exact
sequence:
<xs:group name="persongroup">
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 <xs:element name="birthday" type="xs:date"/>
 </xs:sequence>
</xs:group>
After you have defined a group, you can reference it in another definition, like this:
<xs:group name="persongroup">
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 <xs:element name="birthday" type="xs:date"/>
 </xs:sequence>
</xs:group>

For more notes visit https://collegenote.pythonanywhere.com

<xs:element name="person" type="personinfo"/>

<xs:complexType name="personinfo">
 <xs:sequence>
 <xs:group ref="persongroup"/>
 <xs:element name="country" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

Attribute Groups
Attribute groups are defined with the attributeGroup declaration, like this:
<xs:attributeGroup name="groupname">
 ...
</xs:attributeGroup>
The following example defines an attribute group named "personattrgroup":
<xs:attributeGroup name="personattrgroup">
 <xs:attribute name="firstname" type="xs:string"/>
 <xs:attribute name="lastname" type="xs:string"/>
 <xs:attribute name="birthday" type="xs:date"/>
</xs:attributeGroup>
After you have defined an attribute group, you can reference it in another definition, like this:
<xs:attributeGroup name="personattrgroup">
 <xs:attribute name="firstname" type="xs:string"/>
 <xs:attribute name="lastname" type="xs:string"/>
 <xs:attribute name="birthday" type="xs:date"/>
</xs:attributeGroup>

<xs:element name="person">
 <xs:complexType>
 <xs:attributeGroup ref="personattrgroup"/>
 </xs:complexType>
</xs:element>

The <any> Element
The <any> element enables us to extend the XML document with elements not specified by the schema.
By using the <any> element we can extend (after <lastname>) the content of "person" with any
element:
<xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 <xs:any minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

For more notes visit https://collegenote.pythonanywhere.com

Now we want to extend the "person" element with a "children" element. In this case we can do so, even
if the author of the schema above never declared any "children" element.
Look at this schema file, called "children.xsd":

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.w3schools.com" xmlns="http://www.w3schools.com"
elementFormDefault="qualified">

<xs:element name="children">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="childname" type="xs:string" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

</xs:schema>

The XML file below (called "Myfamily.xml"), uses components from two different schemas; "family.xsd"
and "children.xsd":
<?xml version="1.0" encoding="UTF-8"?>

<persons xmlns="http://www.microsoft.com"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.microsoft.com family.xsd http://www.w3schools.com children.xsd">

<person>
 <firstname>Hege</firstname>
 <lastname>Refsnes</lastname>
 <children>
 <childname>Cecilie</childname>
 </children>
</person>

<person>
 <firstname>Stale</firstname>
 <lastname>Refsnes</lastname>
</person>

</persons>

The XML file above is valid because the schema "family.xsd" allows us to extend the "person" element
with an optional element after the "lastname" element. The <any> and <anyAttribute> elements are
used to make EXTENSIBLE documents! They allow documents to contain additional elements that are
not declared in the main XML schema.

For more notes visit https://collegenote.pythonanywhere.com

XPath
XPath is used to navigate through elements and attributes in an XML document. XPath is a major
element in W3C's XSLT standard - and XQuery and XPointer are both built on XPath expressions.

What is XPath?

 XPath is a syntax for defining parts of an XML document

 XPath uses path expressions to navigate in XML documents

 XPath contains a library of standard functions

 XPath is a major element in XSLT

 XPath is a W3C recommendation

XPath Terminology

Nodes
In XPath, there are seven kinds of nodes: element, attribute, text, namespace, processing-instruction,
comment, and document nodes. XML documents are treated as trees of nodes. The topmost element of
the tree is called the root element.
Let’s begin with example:

<?xml version="1.0" encoding="UTF-8"?>
<bookstore>
<book>
 <title lang="en">Harry Potter</title>
 <price>29.99</price>
</book>
<book>
 <title lang="en">Learning XML</title>
 <price>39.95</price>
</book>
</bookstore>

Selecting Nodes
XPath uses path expressions to select nodes in an XML document. The node is selected by following a
path or steps. The most useful path expressions are listed below:

Expression Description

Nodename Selects all nodes with the name "nodename"

/ Selects from the root node

// Selects nodes in the document from the current node that match the
selection no matter where they are

. Selects the current node

For more notes visit https://collegenote.pythonanywhere.com

.. Selects the parent of the current node

@ Selects attributes

In the table below we have listed some path expressions and the result of the expressions (for bookstore
example)

Path Expression Result

Bookstore Selects all nodes with the name "bookstore"

/bookstore Selects the root element bookstore
Note: If the path starts with a slash (/) it always represents an absolute path
to an element!

bookstore/book Selects all book elements that are children of bookstore

//book Selects all book elements no matter where they are in the document

bookstore//book Selects all book elements that are descendant of the bookstore element, no
matter where they are under the bookstore element

//@lang Selects all attributes that are named lang

Predicates
Predicates are used to find a specific node or a node that contains a specific value. Predicates are always
embedded in square brackets. In the table below we have listed some path expressions with predicates
and the result of the expressions:

Path Expression Result

/bookstore/book[1] Selects the first book element that is the child of the bookstore
element.
Note: In IE 5,6,7,8,9 first node is[0], but according to W3C, it is
[1]. To solve this problem in IE, set the SelectionLanguage to
XPath:
In JavaScript: xml.setProperty("SelectionLanguage","XPath");

/bookstore/book[last()] Selects the last book element that is the child of the bookstore
element

/bookstore/book[last()-1] Selects the last but one book element that is the child of the
bookstore element

/bookstore/book[position()<3] Selects the first two book elements that are children of the
bookstore element

//title[@lang] Selects all the title elements that have an attribute named lang

//title[@lang='en'] Selects all the title elements that have an attribute named lang

For more notes visit https://collegenote.pythonanywhere.com

with a value of 'en'

/bookstore/book[price>35.00] Selects all the book elements of the bookstore element that
have a price element with a value greater than 35.00

/bookstore/book[price>35.00]/title Selects all the title elements of the book elements of the
bookstore element that have a price element with a value
greater than 35.00

Selecting Unknown Nodes
XPath wildcards can be used to select unknown XML elements.

Wildcard Description

* Matches any element node

@* Matches any attribute node

node() Matches any node of any kind

In the table below we have listed some path expressions and the result of the expressions:

Path Expression Result

/bookstore/* Selects all the child nodes of the bookstore element

//* Selects all elements in the document

//title[@*] Selects all title elements which have any attribute

XQuery

XQuery is a language for finding and extracting elements and attributes from XML documents. It is to
XML what SQL is to database tables and is designed to query XML data.

 XQuery is the language for querying XML data
 XQuery for XML is like SQL for databases
 XQuery is built on XPath expressions
 XQuery is supported by all major databases
 XQuery is a W3C Recommendation since 2007.

Here is an example of a question that XQuery could solve:
"Select all CD records with a price less than $10 from the CD collection stored in the XML document
called cd_catalog.xml"

XQuery can be used to:

 Extract information to use in a Web Service

For more notes visit https://collegenote.pythonanywhere.com

 Generate summary reports
 Transform XML data to XHTML
 Search Web documents for relevant information

XQuery Example
 for $x in doc("books.xml")/bookstore/book

where $x/price>30
order by $x/title
return $x/title

Let’s start with example:
"books.xml":
<?xml version="1.0" encoding="UTF-8"?>

<bookstore>

<book category="COOKING">

 <title lang="en">Everyday Italian</title>

 <author>Giada De Laurentiis</author>

 <year>2005</year>

 <price>30.00</price>

</book>

<book category="CHILDREN">

 <title lang="en">Harry Potter</title>

 <author>J K. Rowling</author>

 <year>2005</year>

 <price>29.99</price>

</book>

<book category="WEB">

 <title lang="en">XQuery Kick Start</title>

 <author>James McGovern</author>

 <author>Per Bothner</author>

 <author>Kurt Cagle</author>

 <author>James Linn</author>

 <author>Vaidyanathan Nagarajan</author>

 <year>2003</year>

 <price>49.99</price>

</book>

<book category="WEB">

 <title lang="en">Learning XML</title>

 <author>Erik T. Ray</author>

 <year>2003</year>

 <price>39.95</price>

For more notes visit https://collegenote.pythonanywhere.com

</book>

</bookstore>

Functions
XQuery uses functions to extract data from XML documents. The doc() function is used to open the
"books.xml" file:

doc("books.xml")

Path Expressions
XQuery uses path expressions to navigate through elements in an XML document. The following path
expression is used to select all the title elements in the "books.xml" file:
doc("books.xml")/bookstore/book/title

The XQuery above will extract the following:

<title lang="en">Everyday Italian</title>

<title lang="en">Harry Potter</title>

<title lang="en">XQuery Kick Start</title>

<title lang="en">Learning XML</title>

Predicates
XQuery uses predicates to limit the extracted data from XML documents. The following predicate is used
to select all the book elements under the bookstore element that have a price element with a value that
is less than 30:
doc("books.xml")/bookstore/book[price<30]

The XQuery above will extract the following:

<book category="CHILDREN">

 <title lang="en">Harry Potter</title>

 <author>J K. Rowling</author>

 <year>2005</year>

 <price>29.99</price>

</book>

FLWOR
FLWOR is an acronym for "For, Let, Where, Order by, Return". Explaining for example below:

The for clause selects all book elements under the bookstore element into a variable called $x.
The let clause simply declares a variable and gives it a value:

let $maxCredit := 3000

let $overdrawnCustomers := //customer[overdraft > $maxCredit]

return count($overdrawnCustomers)
The where clause selects only book elements with a price element with a value greater than 30.
The order by clause defines the sort-order. Will be sort by the title element.
The return clause specifies what should be returned. Here it returns the title elements.

For more notes visit https://collegenote.pythonanywhere.com

Example 1:
for $x in doc("books.xml")/bookstore/book
where $x/price>30
order by $x/title
return $x/title

Above xquery generates following output:
<title lang="en">Learning XML</title>
<title lang="en">XQuery Kick Start</title>

Example 2:
for $x in doc("books.xml")/bookstore/book
return if ($x/@category="CHILDREN")
then <child>{data($x/title)}</child>
else <adult>{data($x/title)}</adult>

 Output:
<adult>Everyday Italian</adult>
<child>Harry Potter</child>
<adult>XQuery Kick Start</adult>
<adult>Learning XML</adult>

FLOWR and HTML(Present the Result In an HTML List)

Look at the following XQuery FLWOR expression:
for $x in doc("books.xml")/bookstore/book/title
order by $x
return $x
The expression above will select all the title elements under the book elements that are under the
bookstore element, and return the title elements in alphabetical order. Now we want to list all the book-
titles in our bookstore in an HTML list. We add and tags to the FLWOR expression:

{
for $x in doc("books.xml")/bookstore/book/title
order by $x
return {$x}
}

The result of the above will be:

<title lang="en">Everyday Italian</title>
<title lang="en">Harry Potter</title>
<title lang="en">Learning XML</title>
<title lang="en">XQuery Kick Start</title>

Now we want to eliminate the title element, and show only the data inside the title element:

{
for $x in doc("books.xml")/bookstore/book/title

For more notes visit https://collegenote.pythonanywhere.com

order by $x
return {data($x)}
}

The result will be (an HTML list):

Everyday Italian
Harry Potter
Learning XML
XQuery Kick Start

XSL/XSLT
XSL stands for EXtensible Stylesheet Language, and is a style sheet language for XML documents. XSLT
stands for XSL Transformations. In this section you will learn how to use XSLT to transform XML
documents into other formats, like XHTML.

It Started with XSL
The World Wide Web Consortium (W3C) started to develop XSL because there was a need for an XML-
based Stylesheet Language.

CSS = Style Sheets for HTML
HTML uses predefined tags, and the meaning of each tag is well understood.
The <table> tag in HTML defines a table - and a browser knows how to display it.
Adding styles to HTML elements are simple. Telling a browser to display an element in a special font or
color is easy with CSS.

XSL = Style Sheets for XML
XML does not use predefined tags (we can use any tag-names we like), and therefore the meaning of
each tag is not well understood.
A <table> tag could mean an HTML table, a piece of furniture, or something else - and a browser does
not know how to display it.
XSL describes how the XML document should be displayed!

XSL - More Than a Style Sheet Language
XSL consists of three parts:

 XSLT - a language for transforming XML documents

 XPath - a language for navigating in XML documents

 XSL-FO - a language for formatting XML documents

What is XSLT?

 XSLT stands for XSL Transformations

 XSLT is the most important part of XSL

 XSLT transforms an XML document into another XML document

 All major browsers have support for XSLT.

 XSLT uses XPath to navigate in XML documents

 XSLT is a W3C Recommendation since 16 November 1999

For more notes visit https://collegenote.pythonanywhere.com

XSLT = XSL Transformations
XSLT is the most important part of XSL and is used to transform an XML document into another XML
document, or another type of document that is recognized by a browser, like HTML and XHTML.
Normally XSLT does this by transforming each XML element into an (X)HTML element.
With XSLT you can add/remove elements and attributes to or from the output file. You can also
rearrange and sort elements, perform tests and make decisions about which elements to hide and
display, and a lot more.
A common way to describe the transformation process is to say that XSLT transforms an XML source-
tree into an XML result-tree.

XSLT Uses XPath
XSLT uses XPath to find information in an XML document. XPath is used to navigate through elements
and attributes in XML documents.

How does it Work?
In the transformation process, XSLT uses XPath to define parts of the source document that should
match one or more predefined templates. When a match is found, XSLT will transform the matching part
of the source document into the result document.

XSLT Example

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
 <html>
 <body>
 <h2>My CD Collection</h2>
 <table border="1">
 <tr bgcolor="#9acd32">
 <th>Title</th>
 <th>Artist</th>
 </tr>
 <xsl:for-each select="catalog/cd">
 <tr>
 <td><xsl:value-of select="title"/></td>
 <td><xsl:value-of select="artist"/></td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
</xsl:template>

</xsl:stylesheet>

Hey! <xsl:stylesheet> and <xsl:transform> are completely synonymous and either can be used.

Save this file with .xsl

extension, something

like cdcatalog.xsl

For more notes visit https://collegenote.pythonanywhere.com

And we can reference this XSL style sheet to xml document as:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="cdcatalog.xsl"?>
<catalog>
 <cd>
 <title>Empire Burlesque</title>
 <artist>Bob Dylan</artist>
 <country>USA</country>
 <company>Columbia</company>
 <price>10.90</price>
 <year>1985</year>
 </cd>
.
.
</catalog>

The <xsl:template> Element
A template contains rules to apply when a specified node is matched. The match attribute is used to
associate a template with an XML element. The match attribute can also be used to define a template
for the entire XML document. The value of the match attribute is an XPath expression (i.e. match="/"
defines the whole document).

The <xsl:value-of> Element
The <xsl:value-of> element can be used to extract the value of an XML element and add it to the output
stream of the transformation.

<td><xsl:value-of select="catalog/cd/title"/></td>
 <td><xsl:value-of select="catalog/cd/artist"/></td>

Hey! The select attribute, in the example above, contains an XPath expression.

The <xsl:for-each> Element
The XSL <xsl:for-each> element can be used to select every XML element of a specified node-set.
Filtering the Output
We can also filter the output from the XML file by adding a criterion to the select attribute in the
<xsl:for-each> element.
<xsl:for-each select="catalog/cd[artist='Bob Dylan']">
Legal filter operators are:

 = (equal)
 != (not equal)
 < less than
 > greater than

Example:
<xsl:for-each select="catalog/cd[artist='Bob Dylan']">

 <tr>
 <td><xsl:value-of select="title"/></td>
 <td><xsl:value-of select="artist"/></td>
 </tr>
 </xsl:for-each>

XSLT <xsl:sort> Element

For more notes visit https://collegenote.pythonanywhere.com

The <xsl:sort> element is used to sort the output. To sort the output, simply add an <xsl:sort> element
inside the <xsl:for-each> element in the XSL file:

<xsl:for-each select="catalog/cd">
 <xsl:sort select="artist"/>
 <tr>
 <td><xsl:value-of select="title"/></td>
 <td><xsl:value-of select="artist"/></td>
 </tr>
 </xsl:for-each>

XSLT <xsl:if> Element
The <xsl:if> element is used to put a conditional test against the content of the XML file. To add a
conditional test, add the <xsl:if> element inside the <xsl:for-each> element in the XSL file:

<xsl:if test="expression">
 ...some output if the expression is true...
</xsl:if>

Example:

<xsl:for-each select="catalog/cd">
 <xsl:if test="price > 10">
 <tr>
 <td><xsl:value-of select="title"/></td>
 <td><xsl:value-of select="artist"/></td>
 <td><xsl:value-of select="price"/></td>
 </tr>
 </xsl:if>
</xsl:for-each>

XSLT <xsl:choose> Element
The <xsl:choose> element is used in conjunction with <xsl:when> and <xsl:otherwise> to express
multiple conditional tests.

Syntax
<xsl:choose>
 <xsl:when test="expression">
 ... some output ...
 </xsl:when>
 <xsl:otherwise>
 ... some output
 </xsl:otherwise>
</xsl:choose>

To insert a multiple conditional test against the XML file, add the <xsl:choose>, <xsl:when>, and
<xsl:otherwise> elements to the XSL file:

Example

For more notes visit https://collegenote.pythonanywhere.com

 <xsl:for-each select="catalog/cd">
 <tr>
 <td><xsl:value-of select="title"/></td>
 <xsl:choose>
 <xsl:when test="price > 10">
 <td bgcolor="#ff00ff">
 <xsl:value-of select="artist"/></td>
 </xsl:when>
 <xsl:otherwise>
 <td><xsl:value-of select="artist"/></td>
 </xsl:otherwise>
 </xsl:choose>
 </tr>
 </xsl:for-each>

Another Example
Here is another example that contains two <xsl:when> elements:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
 <html>
 <body>
 <h2>My CD Collection</h2>
 <table border="1">
 <tr bgcolor="#9acd32">
 <th>Title</th>
 <th>Artist</th>
 </tr>
 <xsl:for-each select="catalog/cd">
 <tr>
 <td><xsl:value-of select="title"/></td>
 <xsl:choose>
 <xsl:when test="price > 10">
 <td bgcolor="#ff00ff">
 <xsl:value-of select="artist"/></td>
 </xsl:when>
 <xsl:when test="price > 9">
 <td bgcolor="#cccccc">
 <xsl:value-of select="artist"/></td>
 </xsl:when>
 <xsl:otherwise>
 <td><xsl:value-of select="artist"/></td>
 </xsl:otherwise>
 </xsl:choose>
 </tr>
 </xsl:for-each>
 </table>
 </body>

For more notes visit https://collegenote.pythonanywhere.com

 </html>
</xsl:template>

</xsl:stylesheet>

For more notes visit https://collegenote.pythonanywhere.com

Unit 4 Server Tier

Web Server Concepts

A web server is a computer system that processes requests via HTTP, the basic network protocol used to
distribute information on the World Wide Web. The term can refer either to the entire system, or
specifically to the software that accepts and supervises the HTTP requests. The most common use of
web servers is to host websites, but there are other uses such as gaming, data storage,
running enterprise applications, handling email, FTP, or other web uses.

The primary function of a web server is to store, process and deliver web pages to clients. Pages
delivered are most frequently HTML documents, which may include images, style sheets and scripts in
addition to text content. A user agent, commonly a web browser or web crawler, initiates
communication by making a request for a specific resource using HTTP and the server responds with the
content of that resource or an error message if unable to do so. The resource is typically a real file on
the server's secondary storage. While the primary function is to serve content, a full implementation of
HTTP also includes ways of receiving content from clients. This feature is used for submitting web forms,
including uploading of files.

Many generic web servers also support server-side scripting using Active Server Pages (ASP), PHP, or
other scripting languages. This means that the behavior of the web server can be scripted in separate
files, while the actual server software remains unchanged. Usually, this function is used to create HTML
documents dynamically ("on-the-fly") as opposed to returning static documents. The former is primarily
used for retrieving and/or modifying information from databases. The latter is typically much faster and
more easily cached but cannot deliver dynamic content.

Web server features
 Virtual hosting: to serve many web sites using one IP address
 Large file support: to be able to serve files whose size is greater than 2 GB
 Bandwidth throttling: to limit the speed of responses in order to not saturate the network and

to be able to serve more clients
 Server-side scripting: to generate dynamic web pages, still keeping web server and website

implementations separate from each other

Kernel-mode and user-mode web servers
A web server can be either implemented into the OS kernel, or in user space (like other regular
applications). An in-kernel web server (like Microsoft IIS on Windows or TUX on GNU/Linux) will usually
work faster, because, as part of the system, it can directly use all the hardware resources it needs, such
as non-paged memory, CPU time-slices, network adapters, or buffers.
Web servers that run in user-mode have to ask the system for permission to use more memory or more
CPU resources.

Load limits
A web server (program) has defined load limits, because it can handle only a limited number of
concurrent client connections (usually between 2 and 80,000, by default between 500 and 1,000) per IP
address (and TCP port) and it can serve only a certain maximum number of requests per second
depending on:

For more notes visit https://collegenote.pythonanywhere.com

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Kernel_(computing)
http://en.wikipedia.org/wiki/User_space
http://en.wikipedia.org/wiki/In-kernel_web_server
http://en.wikipedia.org/wiki/Internet_Information_Services
http://en.wikipedia.org/wiki/TUX_web_server
http://en.wikipedia.org/wiki/User-mode

 its own settings,
 the HTTP request type,
 whether the content is static or dynamic,
 whether the content is cached, and
 The hardware and software limitations of the OS of the computer on which the web server runs.

When a web server is near to or over its limit, it becomes unresponsive.

Causes of overload
At any time web servers can be overloaded because of:

 Too much legitimate web traffic: Thousands or even millions of clients connecting to the web
site in a short interval, e.g., Slashdot effect.

 Distributed Denial of Service attacks: A denial-of-service attack (DoS attack) or distributed
denial-of-service attack (DDoS attack) is an attempt to make a computer or network resource
unavailable to its intended users.

 Computer worms that sometimes cause abnormal traffic because of millions of infected
computers (not coordinated among them).

 XSS viruses can cause high traffic because of millions of infected browsers and/or web servers.
 Internet bots Traffic not filtered/limited on large web sites with very few resources (bandwidth,

etc.).
 Internet (network) slowdowns, so that client requests are served more slowly and the number

of connections increases so much that server limits are reached;
 Web servers (computers) partial unavailability: This can happen because of required or urgent

maintenance or upgrade, hardware or software failures, back-end (e.g.,database) failures, etc.;
in these cases the remaining web servers get too much traffic and become overloaded.

Anti-overload techniques
To partially overcome above average load limits and to prevent overload, most popular web sites use
common techniques like:

 Managing network traffic, by using:
 Firewalls to block unwanted traffic coming from bad IP sources or having bad patterns
 HTTP traffic managers to drop, redirect or rewrite requests having bad HTTP patterns
 Bandwidth management and traffic shaping, in order to smooth down peaks in

network usage.
 Deploying web cache techniques
 Using different domain names to serve different (static and dynamic) content by separate web

servers, i.e.:
 http://images.example.com
 http://www.example.com

 Using different domain names and/or computers to separate big files from small and medium
sized files; the idea is to be able to fully cache small and medium sized files and to efficiently
serve big or huge (over 10 - 1000 MB) files by using different settings

 Using many web servers (programs) per computer, each one bound to its own network
card and IP address.

 Using many web servers (computers) that are grouped together behind a load balancer so that
they act or are seen as one big web server

 Adding more hardware resources (i.e. RAM, disks) to each computer
 Tuning OS parameters for hardware capabilities and usage

For more notes visit https://collegenote.pythonanywhere.com

Market share of major web servers
Below are the statistics of the market share of the top web servers on the Internet by April, May 2014.

Product Vendor April 2014 Percent May 2014 Percent

Apache Apache 361,853,003 37.74% 366,262,346 37.56%

IIS Microsoft 316,843,695 33.04% 325,854,054 33.41%

nginx NGINX, Inc. 146,204,067 15.25% 142,426,538 14.60%

GWS Google 20,983,310 2.19% 20,685,165 2.12%

Apache, IIS and Nginx are the most used web servers on the Internet.

Creating Dynamic Content
Classical hypertext navigation, with HTML or XHTML alone, provides "static" content, meaning that the
user requests a web page and simply views the page and the information on that page. However, a web
page can also provide a "live", "dynamic", or "interactive" user experience. Content (text, images, form
fields, etc.) on a web page can change, in response to different contexts or conditions.

There are two ways to create this kind of effect:

 Using client-side scripting to change interface behaviors within a specific web page, in response
to mouse or keyboard actions or at specified timing events. In this case the dynamic behavior
occurs within the presentation.

For more notes visit https://collegenote.pythonanywhere.com

This shows how client-side processing occurs:
1. The web browser sends a request for an HTML file
2. The web server sends it back
3. The web browser receives the index.html file and processes javascript, plug-ins (java, audio,

video,...) (this information is included in the index.html file)
4. The web browser displays the page

 Using server-side scripting to change the supplied page source between pages, adjusting the
sequence or reload of the web pages or web content supplied to the browser. Server responses
may be determined by such conditions as data in a posted HTML form, parameters in the URL,
the type of browser being used, the passage of time, or a database or server state.

The following diagram shows server-side scripting; on how a web server will handle a request
for a PHP file (PHP is an example, and many other methods behave the same way - ASP, cgi-bin
programs etc.):

1. The browser sends a GET request to the remote web server for a PHP file
2. The web server recognizes the .php extension, and does a special processing on the PHP file

in order to generate a temporary file
3. The web server sends this temporary file back to the user

Important! Chapter 4 and 5 incurs specially a lab works, we will use asp.net mvc framework for all the
programs we implement. Asp.net mvc is the latest (since 2009) web development framework from
Microsoft and getting good responses from web world. Other frameworks like ruby on rails, django on
python, groovy on grails, spring for java etc works similarly with few architectural and server-side
compiler differences. Also, for our lab purpose, we stick with C# for server side processing. So altogether
asp.net mvc with c# will be our implementation model.

For more notes visit https://collegenote.pythonanywhere.com

State Management Overview
In traditional Web programming, all the information associated with the page and the controls on the
page would be lost with each round trip. For example, if a user enters information into a text box, that
information would be lost in the round trip from the browser or client device to the server.
To overcome this inherent limitation of traditional Web programming, Frameworks like ASP.NET
includes several options that help you preserve data on both a per-page basis and an application-wide
basis. These features are as follows:

 View state
 Control state
 Hidden fields
 Cookies
 Query strings
 Application state
 Session state
 Profile Properties

View state, control state, hidden fields, cookies, and query strings all involve storing data on the client in
various ways. However, application state, session state, and profile properties all store data in memory
on the server. Each option has distinct advantages and disadvantages, depending on the scenario.

The following sections describe options for state management specific to ASP.NET that involve storing
information either in the page or on the client computer. For these options, no information is
maintained on the server between round trips.

Client based state management options

View State
The ViewState property provides a dictionary object for retaining values between multiple requests for
the same page. This is the default method that the page uses to preserve page and control property
values between round trips.
When the page is processed, the current state of the page and controls is hashed into a string and saved
in the page as a hidden field, or multiple hidden fields if the amount of data stored in
the ViewState property exceeds the specified value in the MaxPageStateFieldLength property. When the
page is posted back to the server, the page parses the view-state string at page initialization and
restores property information in the page. You can store values in view state as well. The following
example shows how to store a value in the view state.

 [C# code]
ViewState["color"] = "red";

Hidden Fields
ASP.NET allows you to store information in a HiddenField control, which renders as a standard HTML
hidden field. A hidden field does not render visibly in the browser, but you can set its properties just as
you can with a standard control. When a page is submitted to the server, the content of a hidden field is
sent in the HTTP form collection along with the values of other controls. A hidden field acts as a
repository for any page-specific information that you want to store directly in the page.

For more notes visit https://collegenote.pythonanywhere.com

<asp:hiddenfield id="ExampleHiddenField"
 value="Example Value"
 runat="server"/>

Cookies
A cookie is a small amount of data that is stored either in a text file on the client file system or in-
memory in the client browser session. It contains site-specific information that the server sends to the
client along with page output. Cookies can be temporary (with specific expiration times and dates) or
persistent.
You can use cookies to store information about a particular client, session, or application. The cookies
are saved on the client device, and when the browser requests a page, the client sends the information
in the cookie along with the request information. The server can read the cookie and extract its value. A
typical use is to store a token (perhaps encrypted) indicating that the user has already been
authenticated in your application.
 The following example shows how to write a cookie.

[C# code]
Response.Cookies["destination"].Value = "CA";
Response.Cookies["destination"].Expires = DateTime.Now.AddDays(1);

Here we are creating cookies server side with C#, we can also manipulate cookies in client using
JavaScript, please see unit 1 page no. 74-75.

Query Strings
A query string is information that is appended to the end of a page URL. A typical query string might look
like the following example:

http://www.contoso.com/listwidgets.aspx?category=basic&price=100

In the URL path above, the query string starts with a question mark (?) and includes two attribute/value
pairs, one called "category" and the other called "price."
Query strings provide a simple but limited way to maintain state information. For example, they are an
easy way to pass information from one page to another, such as passing a product number from one
page to another page where it will be processed. However, some browsers and client devices impose a
2083-character limit on the length of the URL.

In order for query string values to be available during page processing, you must submit the page using
an HTTP GET command. That is, you cannot take advantage of a query string if a page is processed in
response to an HTTP POST command.

Server based state management options

ASP.NET offers you a variety of ways to maintain state information on the server, rather than persisting
information on the client. With server-based state management, you can decrease the amount of
information sent to the client in order to preserve state, however it can use costly resources on the
server. The following sections describe three server-based state management features: application
state, session state, and profile properties.

For more notes visit https://collegenote.pythonanywhere.com

http://www.contoso.com/listwidgets.aspx?category=basic&price=100

Application State
ASP.NET allows you to save values using application state - which is an instance of
the HttpApplicationState class - for each active Web application. Application state is a global storage
mechanism that is accessible from all pages in the Web application. Thus, application state is useful for
storing information that needs to be maintained between server round trips and between requests for
pages.
Application state is stored in a key/value dictionary that is created during each request to a specific URL.
You can add your application-specific information to this structure to store it between page requests.
Once you add your application-specific information to application state, the server manages it. The
following example shows how to assign a value in application state.

 [C# code]
Application["WelcomeMessage"] = "Welcome to the Contoso site.";

Session State
ASP.NET allows you to save values by using session state - which is an instance of
the HttpSessionState class - for each active Web-application session. Session state is similar to
application state, except that it is scoped to the current browser session. If different users are using your
application, each user session will have a different session state. In addition, if a user leaves your
application and then returns later, the second user session will have a different session state from the
first.
Session state is structured as a key/value dictionary for storing session-specific information that needs
to be maintained between server round trips and between requests for pages.

You can use session state to accomplish the following tasks:

 Uniquely identify browser or client-device requests and map them to an individual session
instance on the server.

 Store session-specific data on the server for use across multiple browser or client-device
requests within the same session.

 Raise appropriate session management events. In addition, you can write application code
leveraging these events.

Once you add your application-specific information to session state, the server manages this object.
Depending on which options you specify, session information can be stored in cookies, on an out-of-
process server, or on a computer running Microsoft SQL Server.
 The following example shows how to save a value in session state.
[C# code]
Session["FirstName"] = FirstNameTextBox.Text;
Session["LastName"] = LastNameTextBox.Text;

Tag libraries
Tag libraries help us write server side code within view file (html file in fact) with the help of view
engines in place. ASP.NET MVC supports various view engines like Razor, Aspx, Spark etc with their own
syntactical structure and own view file extension (*.cshtml for Razor with C#).

Creating dynamic content with tag libraries:

Suppose we have simple person class in C#

For more notes visit https://collegenote.pythonanywhere.com

public class Person
{
 public string Name { get; set; }
 public string Address { get; set; }
 public int Cell { get; set; }
 public bool IsMale { get; set; }
 public DateTime DOB { get; set; }
}

If we have collection of this person class (List<Person>) may be in-memory or database
table fetched, we can render this collection in view file in MVC with Razor as:

@model IEnumerable<Person>

<table>
 <thead>
 <tr>
 <th>Name</th>
 <th>Address</th>
 <th>Date Of Birth</th>
 <th>Cell</th>
 <th>IsMale</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var person in Model)
 {
 <tr>
 <td>@person.Name</td>
 <td>@person.Address</td>
 <td>@person.DOB</td>
 <td>@person.Cell</td>
 <td>@person.IsMale</td>
 </tr>
 }
 </tbody>
</table>

Here we are using loop control to generate all people information within table rows dynamically.

Error (Exception) Handling
Error handling allows us to resolve unexpected failovers of web application for different level of
audiences (User, devs, admin etc.). In asp.net mvc application, we can handle errors at different level:

1. Local level exception handling
i. Simple try-catch approach

public ActionResult TestMethod()
{
 try
 {
 //....
 return View();
 }
 catch (Exception e)
 {
 //Handle Exception;
 return View("Error");

For more notes visit https://collegenote.pythonanywhere.com

 }
}

ii. Override OnException Method in controller

protected override void OnException(ExceptionContext filterContext)
{
 Exception e = filterContext.Exception;
 //Log Exception e
 filterContext.ExceptionHandled=true;
 filterContext.Result = new ViewResult()
 {
 ViewName = "Error"
 };
}

2. Global level exception handling

i. Using FilterConfig class

public class FilterConfig
{
 public static void RegisterGlobalFilters(GlobalFilterCollection filters)
 {
 filters.Add(new HandleErrorAttribute());
 }
}

It handles all the exceptions raised by all action methods in all the controllers and return
error view present inside shared folder.

Handling error for specific controller using HandleErrorAttribute:

OR

Handle error at action level:

Unit 5: Advanced server side issues

Database connectivity
For data incentive applications, we need a resilient connection to backing store. Every
languages/frameworks have their own conventions and driver sets to connect to database. In .NET,
ADO.NET (Active Data Object) has responsibility to connect to relational databases like Oracle, Sql
server, MySql etc. ADO.NET is also a part of the .NET Framework and is used to handle data access
services in .NET platform.

For more notes visit https://collegenote.pythonanywhere.com

You can use ADO.NET to access data by using the new .NET Framework data providers which are:
 Data Provider for SQL Server (System.Data.SqlClient).
 Data Provider for OLEDB (System.Data.OleDb).
 Data Provider for ODBC (System.Data.Odbc).
 Data Provider for Oracle (System.Data.OracleClient).

ADO.NET is a set of classes that expose data access services to the .NET developer. The ADO.NET classes
are found in System.Data.dll and are integrated with the XML classes in System.Xml.dll. There are two
central components of ADO.NET classes: the DataSet, and the .NET Framework Data Provider.
Data Provider is a set of components including:

 the Connection object (SqlConnection, OleDbConnection, OdbcConnection, OracleConnection)

 the Command object (SqlCommand, OleDbCommand, OdbcCommand, OracleCommand)

 the DataReader
object (SqlDataReader, OleDbDataReader, OdbcDataReader, OracleDataReader)

 and the DataAdapter Object (SqlDataAdapter, OleDbDataAdapter, OdbcDataAdapter,
OracleDataAdapter).

DataSet object represents a disconnected cache of data which is made up of DataTables and
DataRelations that represent the result of the command.

For above set of classes we need to use raw sql queries for select, insert, update and delete:
Assuming Student table in db

--Selection

For more notes visit https://collegenote.pythonanywhere.com

select * from Student

--Inserting into table
insert into Student values ('Ramesh Niraula', 'ktm-89', 'AB+', 9845876, '1945-02-02');

--Updating table row
update Student set Name='Ram Niraula' where Id=2;

--delete a table row
delete from Student where Name = 'Ram Niraula';

We also need to provide a connection string for a database used. Something like:

public string conString = @"Provider=Microsoft.Jet.OLEDB.4.0;DataSource=..\\..\\PersonDatabase.mdb";

OR in web.config configuration file as:

<add name="DefaultConnection" connectionString="Data Source=(LocalDb)\v11.0;Initial
Catalog=aspnet-WebApp-20141201101220;Integrated
Security=SSPI;AttachDBFilename=|DataDirectory|\aspnet-WebApp-20141201101220.mdf"
providerName="System.Data.SqlClient" />

<add name="TestEntities"
connectionString="metadata=res://*/Models.DbTest.csdl|res://*/Models.DbTest.ssdl|res://*/
Models.DbTest.msl;provider=System.Data.SqlClient;provider connection string="data
source=(LocalDb)\v11.0;initial catalog=DbTest;integrated
security=True;pooling=False;multipleactiveresultsets=True;application
name=EntityFramework"" providerName="System.Data.EntityClient" />

Today’s database development in .NET world uses ORM (Object Relational Mapping) tools like Entity
Framework (EF), NHibernate etc. These tools provide productivity to a developer abstracting ADO.NET
data access methods. We have already used EF in our basic projects using entity data model of entity
framework (EF) database-first where EF created context and model classes as:

 public partial class TestEntities : DbContext
 {
 public TestEntities()

 : base("name=TestEntities") //TestEntities is connection string
 {
 }

 public DbSet<Student> Students { get; set; }
 }

And student model,

 public partial class Student
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public string Address { get; set; }
 public string BloodGroup { get; set; }
 public Nullable<int> Cell { get; set; }
 public Nullable<System.DateTime> DOB { get; set; }
 }

For more notes visit https://collegenote.pythonanywhere.com

Then it is just the matter of querying models,
private TestEntities db = new TestEntities();
var students = db.Students.ToList();
var student = db.Students.Find(id);
db.Students.Add(student);
db.SaveChanges();
…other operations works similarly

File Handling
We already did a dictionary project where we use a plain text file as a data source. Text data is fetched
using API (Application Programming Interface) from System.IO (in .NET). This namespace provides
bunch of reader/writer classes to handle files and directories.

StreamReader r = new StreamReader(Path.Combine(
 System.Web.HttpContext.Current.Request.PhysicalApplicationPath,
 "App_Data\\Data.txt"));
var allWords = r.ReadToEnd();
r.Dispose();

Instead of streamReader, we could have used BinaryReaders, TextReaders etc provided by System.IO.

Form Handling
Html forms can be handled by ASP.NET MVC pretty easily to collect some data from the user:
<form action="/test/addstudent" method="post">
 <label>Name</label>
 <input id="Name" name="Name" type="text" value="">
 <label>Address</label>
 <textarea id="Address" name="Address"></textarea>
 <label>Blood Group</label>
 <input id="BloodGroup" name="BloodGroup" type="text" value="">
 <label>Phone Number</label>
 <input data-val="true" data-val-number="The field Cell must be a number." id="Cell"
name="Cell" type="text" value="">
 <label>Date of birth</label>
 <input data-val="true" data-val-date="The field DOB must be a date." id="DOB"
name="DOB" type="text" value="">

 <input type="submit" value="Create">
</form>

OR using Html Helpers given Razor view engine, same form can be created as:

@using (Html.BeginForm("AddStudent","Test", HttpVerbs.Post))
{
 <label>Name</label>
 @Html.TextBoxFor(x => x.Name);
 <label>Address</label>
 @Html.TextBoxFor(x => x.Address);
 <label>Blood Group</label>
 @Html.TextBoxFor(x => x.BloodGroup);
 <label>Phone Number</label>
 @Html.TextBoxFor(x => x.Cell);
 <label>Date of birth</label>

For more notes visit https://collegenote.pythonanywhere.com

 @Html.TextBoxFor(x => x.DOB);

 <input type="submit" value="Create" />
}

The view file containing above code must be strongly typed (Ability to accept some model) to gather
form data as:

@model WebApp.Models.Student

Then in controller action,
[HttpPost]
public ActionResult AddStudent(Student model)
{
 TestEntities database = new TestEntities();
 database.Students.Add(model);
 database.SaveChanges();
 return View();
}

Authentication
Authentication is the process of obtaining identification credentials such as name and password from a
user and validating those credentials against some authority. If the credentials are valid, the entity that
submitted the credentials is considered an authenticated identity. Once an identity has been
authenticated, the authorization process determines whether that identity has access to a given
resource.
ASP.NET implements authentication through authentication providers, the code modules that contain
the code necessary to authenticate the requestor's credentials. The topics in this section describe the
authentication providers built into ASP.NET.

Term Definition

Windows Authentication

(Integrated Windows

Authentication)

In this methodology ASP.NET web pages will use local windows users and groups to

authenticate and authorize resources. Provides information on how to use Windows

authentication in conjunction with Microsoft Internet Information Services (IIS) authentication

to secure ASP.NET applications.

Forms Authentication Provides information on how to create an application-specific login form and perform

authentication using your own code. A convenient way to work with forms authentication is to

use ASP.NET membership and ASP.NET login controls, which together provide a way to collect

user credentials, authenticate them, and manage them, using little or no code.

Passport authentication

(OpenId authentication)

Passport authentication is based on the passport website provided

by the Microsoft, Google, Facebook and Twitter. So when user logins with

credentials it will be reached to the passport website where authentication will

happen. If Authentication is successful it will return a token to your website.

Anonymous access

If you do not want any kind of authentication then you will go for Anonymous

access.

For more notes visit https://collegenote.pythonanywhere.com

For more notes visit https://collegenote.pythonanywhere.com

