Data Structures and Algorithms - Old Questions
5. Transform the postfix expression AB − C + DEF − + $ to infix.
5 marks
|
Asked in 2071
Given postfix expression:
AB − C + DEF − + $
Converting it into infix:
Characters |
Stack |
Operation |
A |
A |
|
B |
A, B |
|
- |
|
(A-B) |
|
(A-B) |
|
C |
(A-B), C |
|
+ |
|
((A-B)+C) |
|
((A-B)+C) |
|
D |
((A-B)+C), D |
|
E |
((A-B)+C), D, E |
|
F |
((A-B)+C), D, E,
F |
|
- |
((A-B)+C), D |
(E-F) |
|
((A-B)+C), D,
(E-F) |
|
+ |
((A-B)+C) |
(D-(E-F)) |
|
((A-B)+C), (D-(E-F)) |
|
$ |
|
(((A-B)+C)$ (D-(E-F))) |
|
(((A-B)+C)$ (D-(E-F))) |
|
The infix expression of given postfix
expression is: (((A-B)+C)$ (D-(E-F)))