Simulation and Modelling - Old Questions
9. Use Multiplicative congruential method to generate a sequence of 10 three-digit random
integers and corresponding random variables. Let X0 = 5, a = 3 and c=2.
Given,
X0 = 5,
α = 3
c = 2,
For three-digit random integers
m=1000
We have,
For multiplicative congruential method ( c =0) so
Xi+1 = (α Xi ) mod m
The sequence of random integers are calculated as follows:
X0 = 5
R0 = 5/1000 = 0.005
X1 = (α X0) mod m = (3*5) mod 1000 = 15 mod 1000 = 15
R1 = 15/1000 = 0.015
X2 = (α X1) mod m = (3*15) mod 1000 = 45 mod 1000 = 45
R2 = 45/1000 = 0.045
X3 = (α X2) mod m = (3*45) mod 1000 = 135 mod 1000 = 135
R3 = 135/1000 = 0.135
X4= (α X3 ) mod m = (3*135) mod 1000 = 405 mod 1000 = 405
R4 = 405/1000 = 0.405
X5= (α X4 ) mod m = (3*405) mod 1000 = 1215 mod 1000 = 215
R5= 215/1000 = 0.215
X6= (α X5) mod m = (3*215) mod 1000 = 645 mod 1000 = 645
R6 = 645/1000 = 0.645
X7= (α X6) mod m = (3*645) mod 1000 = 1935 mod 1000 = 935
R7 = 935/1000 = 0.935
X8= (α X7) mod m = (3*935) mod 1000 = 2805 mod 1000 = 805
R8 = 805/1000 = 0.805
X9= (α X8) mod m = (3*805) mod 1000 = 2415 mod 1000 = 415
R9 = 415/1000 = 0.415
X10 = (α X9) mod m = (3*415) mod 1000 = 1245 mod 1000 = 245
R10 = 245/1000 = 0.245