Mathematics II - Old Questions
16. Let be a linear transformation and let A be the standard matrix for T. Then prove that: T map Rn on to Rm if and only if the columns of A span Rm; and T is one-to-one if and only if the columns of A are linearly independent. Let T(x1, x2) = (3x1 + x2, 5x1 + 7x2, x1 + 3x2). Show that T is a one-to-one linear transformation. Does T map R2 onto R3?
8 marks
|
Asked in 2074